The chitosan hydrogels: from structure to function

2018 ◽  
Vol 42 (21) ◽  
pp. 17162-17180 ◽  
Author(s):  
Jing Fu ◽  
Fuchao Yang ◽  
Zhiguang Guo

This review places an emphasis on chitosan intelligent hydrogels. The fabrication methods and mechanisms are introduced in this review and the interactions of the formation of hydrogels with both physical and chemical bonds are also introduced. The relationship between the structural characteristics and the corresponding functions of stimuli-responsive characteristics, self-healing functions and high mechanical strength properties of the chitosan hydrogels are discussed in detail.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1315
Author(s):  
Ewa Witczak ◽  
Izabela Jasińska ◽  
Iwona Krawczyńska

Multilayer woven fabrics used for conveyor belts must be characterized by high mechanical strength. The design process of multilayer woven fabrics for such application requires taking into account the structural characteristics of the fabric, which allows to adjust the final product properties to the dedicated use. The geometry of warp threads—means stuffer and binding is the decisive aspect, which influences the strength properties of multilayer woven fabrics and materials made with their use as well. The aim of this work was to examine the possibility of shaping mechanical strength and bending rigidity of multilayer woven fabrics by changing the order of introducing weft threads into individual layers. The eight variants of multilayer woven fabrics were manufactured using laboratory harness loom. They were produced using different structural models in two weft variants, then tested. The mechanical features were determined, such as breaking force, recovered and unrecovered elongations in cyclic tensile test, stiffness rigidity. The analysis of the obtained results confirmed, that both the model and the order in which the weft threads were introduced into individual layers influence the mechanical strength and bending rigidity of multilayer woven. It was found, that the strength properties characterized by the above mentioned indicators are influenced by the number of threads weaved as both the stuffer and binding warp.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3574
Author(s):  
Pejman Heidarian ◽  
Hossein Yousefi ◽  
Akif Kaynak ◽  
Mariana Paulino ◽  
Saleh Gharaie ◽  
...  

Electroconductive hydrogels with stimuli-free self-healing and self-recovery (SELF) properties and high mechanical strength for wearable strain sensors is an area of intensive research activity at the moment. Most electroconductive hydrogels, however, consist of static bonds for mechanical strength and dynamic bonds for SELF performance, presenting a challenge to improve both properties into one single hydrogel. An alternative strategy to successfully incorporate both properties into one system is via the use of stiff or rigid, yet dynamic nano-materials. In this work, a nano-hybrid modifier derived from nano-chitin coated with ferric ions and tannic acid (TA/Fe@ChNFs) is blended into a starch/polyvinyl alcohol/polyacrylic acid (St/PVA/PAA) hydrogel. It is hypothesized that the TA/Fe@ChNFs nanohybrid imparts both mechanical strength and stimuli-free SELF properties to the hydrogel via dynamic catecholato-metal coordination bonds. Additionally, the catechol groups of TA provide mussel-inspired adhesion properties to the hydrogel. Due to its electroconductivity, toughness, stimuli-free SELF properties, and self-adhesiveness, a prototype soft wearable strain sensor is created using this hydrogel and subsequently tested.


Author(s):  
Liangliang Xia ◽  
Ming Zhou ◽  
Hongjun Tu ◽  
wen Zeng ◽  
xiaoling Yang ◽  
...  

The preparation of room-temperature self-healing polymeric materials with good healing efficiency and high mechanical strength is challenging. Two processes are essential to realise the room-temperature self-healing of materials: (a) a...


2019 ◽  
Vol 3 (3) ◽  
pp. 464-471 ◽  
Author(s):  
Jing Cui ◽  
Zhe Ma ◽  
Li Pan ◽  
Chun-Hua An ◽  
Jing Liu ◽  
...  

Synergistic hard/soft gradient distribution and dynamic ionic interactions impart high mechanical strength, toughness, stretchability and tenacious self-healing ability to copolymers.


1990 ◽  
Vol 215 ◽  
Author(s):  
K. Nishii ◽  
M. Usui ◽  
T. Muraya ◽  
K. Kimura

Polymer blend technology is attractive from the standpoint of both science and industry, and many combinations have been studied. Recently, the polymer blends, including liquid crystalline polymer, have been especially worthy of notice, [1,2,3]. In order to obtain materials with a high mechanical strength and moldability for use in thin molded items, we chose polyamide (PA)-liquid crystalline polymer (LCP) blends. In this study, we first measured the mechanical properties, then studied the features of the polymer structure. We also examined the relationship between morphology and mechanical properties. As a result, we found that the mechanical properties of the blends depended largely on blend morphology, and that mechanical strength increased as blend compatibility increased. On the other hand, we also found that the blends showed compatible and microheterogeneous dispersion at less than 25 wt% LCP, while at more than 30 wt% LCP, blends tended to show twophase separation.


2016 ◽  
Vol 49 (19) ◽  
pp. 7442-7449 ◽  
Author(s):  
Cigdem Bilici ◽  
Volkan Can ◽  
Ulrich Nöchel ◽  
Marc Behl ◽  
Andreas Lendlein ◽  
...  

2004 ◽  
Vol 37 (14) ◽  
pp. 5370-5374 ◽  
Author(s):  
Yang-Ho Na ◽  
Takayuki Kurokawa ◽  
Yoshinori Katsuyama ◽  
Hiroyuki Tsukeshiba ◽  
Jian Ping Gong ◽  
...  

2020 ◽  
Vol 8 (7) ◽  
pp. 3667-3675 ◽  
Author(s):  
Siheng Li ◽  
Hongyu Pan ◽  
Yuting Wang ◽  
Junqi Sun

Hydrogel-based self-healing ionic skins possess high mechanical strength, excellent resilience, anti-freezing properties and high sensitivity and can heal fatigue and mechanical damage to restore the original sensing performance.


2018 ◽  
Vol 57 (29) ◽  
pp. 9008-9012 ◽  
Author(s):  
Zhifang Wang ◽  
Yipeng Ren ◽  
Ye Zhu ◽  
Lijing Hao ◽  
Yunhua Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document