scholarly journals Structural study of epitaxial NdBa2Cu3O7−x films by laser chemical vapor deposition

RSC Advances ◽  
2018 ◽  
Vol 8 (35) ◽  
pp. 19811-19817
Author(s):  
Rong Tu ◽  
Kaidong Wang ◽  
Ting Wang ◽  
Meijun Yang ◽  
Qizhong Li ◽  
...  

Investigate the effect of deposition temperature on preferred orientation, crystallinity, microstructure of NdBCO films using laser CVD.

2012 ◽  
Vol 508 ◽  
pp. 207-210
Author(s):  
Akihiko Ito ◽  
Mitsutaka Sato ◽  
Takashi Goto

C-Axis-Oriented Y2Ba4Cu7O15-δ (Y247) Films Were Prepared on Multilayer-Coated Hasterolly Tape Substrate by Laser Chemical Vapor Deposition with Ultrasonically Nebulized Liquid Precursor. At a Low Precursor Concentration of 0.01 mol l−1 and Deposition Temperature of 933 K, Single-Phase Y247 Film with Significant c-Axis Orientation Was Obtained. At a Precursor Concentration of 0.1 mol l−1 and Deposition Temperature 983 K, a-Axis-Oriented YBa2Cu3O7-δ (Y123) Was Codeposited with C-Axis Oriented Y247 Film.


2012 ◽  
Vol 508 ◽  
pp. 279-282 ◽  
Author(s):  
Ming Gao ◽  
Akihiko Ito ◽  
Rong Tu ◽  
Takashi Goto

Titania (TiO2) Films Having Dense and Solid Microstructure Were Prepared by Laser Chemical Vapor Deposition Using CO2 Laser. The Effects of Deposition Temperature (Tdep) and Total Chamber Pressure (Ptot) on Phase and Microstructure of TiO2 Films Were Investigated. At Ptot = 600 Pa and Tdep = 790 K, Rutile TiO2 Film Had a Polygonal Platelet Grains 2 μm in Size. At Ptot = 600 Pa and Tdep = 1010 K, Rutile TiO2 Film Had (110) Orientation and Consisted of a Truncated Polyhedron 5–6 μm in Size. At Ptot = 200 Pa and Tdep = 955 K, Rutile TiO2 Film Has a Solid Columnar Having Faceted Surface. A Dense and Solid TiO2 Film Was Obtained at Ptot = 200 Pa and Tdep = 1120 K. The Deposition Rate of TiO2 Solid Film Was Reached 240 μm h−1.


2017 ◽  
Vol 100 (4) ◽  
pp. 1634-1641 ◽  
Author(s):  
Peipei Zhu ◽  
Qingfang Xu ◽  
Ruyi Chen ◽  
Song Zhang ◽  
Meijun Yang ◽  
...  

2014 ◽  
Vol 616 ◽  
pp. 141-144
Author(s):  
Chen Chi ◽  
Hirokazu Katsui ◽  
Rong Tu ◽  
Takashi Goto

(004)-oriented γ-LiAlO2films were prepared on poly-crystalline AlN substrates by laser chemical vapor deposition at deposition temperature (Tdep) of 1100–1250 K, molar ratio of Li/Al (RLi/Al) of 1.0–10 and low total pressure (Ptot) of 100–200 Pa. The (004)-oriented γ-LiAlO2films consisted of pyramidal grains with a columnar structure. The deposition rate of (004)-oriented γ-LiAlO2films reached to 65–72 μm h-1.


2011 ◽  
Vol 484 ◽  
pp. 172-176
Author(s):  
Yu You ◽  
Akihiko Ito ◽  
Rong Tu ◽  
Takashi Goto

Al2O3-AlN composite film was first prepared by laser chemical vapor deposition (laser CVD) using aluminum acetylacetonate (Al(acac)3) and ammonia (NH3) as source materials. The effects of NH3 on the crystal phase, composition and microstructure were investigated. The crystal phase changed from α-Al2O3 to AlN gradually with increasing the mole ratio of NH3 to Ar. Al2O3-AlN composite film was obtained at NH3/Ar ratio ranged from 0.09 to 0.16 (Tdep = 862–887 K), and AlN granular grains were embedded in between α-Al2O3 polyhedral grains.


2006 ◽  
Vol 517 ◽  
pp. 77-80
Author(s):  
Hyoun Woo Kim ◽  
Ju Hyun Myung ◽  
Chong Mu Lee

We have synthesized the film-like and rod-like structures of indium oxide (In2O3) by metalorganic chemical vapor deposition (MOCVD) method. The structural morphology of the deposits changed from the film to the arrays of 1-dimensional (1-D) materials with increasing the deposition temperature. The 1-D materials with the serrated surfaces prepared at 350°C possessed a crystalline cubic structure and had preferentially grown along the [111] direction.


1999 ◽  
Vol 347 (1-2) ◽  
pp. 161-166 ◽  
Author(s):  
S. Pignard ◽  
H. Vincent ◽  
J.P. Sénateur ◽  
P.H. Giauque

2001 ◽  
Vol 688 ◽  
Author(s):  
Hiroshi Funakubo ◽  
Kuniharu Nagashima ◽  
Masanori Aratani ◽  
Kouji Tokita ◽  
Takahiro Oikawa ◽  
...  

AbstractPb(Zr,Ti)O3 (PZT) is one of the most promising materials for ferroelectric random access memory (FeRAM) application. Among the various preparation methods, metalorganic chemical vapor deposition (MOCVD) has been recognized as a most important one to realize high density FeRAM because of its potential of high-step-coverage and large-area-uniformity of the film quality.In the present study, pulsed-MOCVD was developed in which a mixture of the source gases was pulsed introduced into reaction chamber with interval. By using this deposition technique, simultaneous improvements of the crystallinity, surface smoothness, and electrical property of the film have been reached by comparing to the conventional continuous gas-supplied MOCVD. Moreover, this film had larger remanent polarization (Pr) and lower leakage current density. This is owing to reevaporation of excess Pb element from the film and increase of migration on the surface of substrate during the interval time.This process is also very effective to decrease the deposition temperature of the film having high quality. In fact, the Pr and the leakage current density of polycrystalline Pb(Zr0.35Ti0.65)O3 film deposited at 415 °C were 41.4 μC/cm2 and on the order of 10−7 A/cm2 at 200 kV/cm. This Pr value was almost the same as that of the epitaxially grown film deposited at 415 °C with the same composition corrected for the orientation difference. This suggests that the polycrystalline PZT film prepared by pulsed-MOCVD had the epitaxial-grade ferroelectric properties even through the deposition temperature was as low as 415 °C. Moreover, large “process window” comparable to the process window at 580 °C, above 150 °C higher temperature and was widely used condition, was achieved even at 395°C by the optimization of the deposition condition.


Sign in / Sign up

Export Citation Format

Share Document