scholarly journals A modelling approach to assess the long-term stability of a novel microbial/electrochemical system for the treatment of acid mine drainage

RSC Advances ◽  
2018 ◽  
Vol 8 (33) ◽  
pp. 18682-18689 ◽  
Author(s):  
Emma Thompson Brewster ◽  
Guillermo Pozo ◽  
Damien J. Batstone ◽  
Stefano Freguia ◽  
Pablo Ledezma

Microbial electrochemical processes have potential to remediate acid mine drainage (AMD) wastewaters which are highly acidic and rich in sulfate and heavy metals, without the need for extensive chemical dosing.

2019 ◽  
Vol 268 ◽  
pp. 06003 ◽  
Author(s):  
Carlito Tabelin ◽  
Asuka Sasaki ◽  
Toshifumi Igarashi ◽  
Shingo Tomiyama ◽  
Mylah Villacorte-Tabelin ◽  
...  

Acid mine drainage (AMD), the very acidic and highly contaminated leachate generated in closed/abandoned mines, is commonly managed by neutralization to raise the pH and precipitate most of the heavy metals. Although effective, this approach does not generate any product of economic value, so it is very costly and unsustainable in the long-term. Unfortunately, there are currently no effective alternatives to neutralization, and one way to improve the sustainability of this process is to reduce the volume of AMD generated and/or the concentration of heavy metals. The tailings dam investigated in this study is located in northern Hokkaido, Japan. Detailed characterization of borehole core samples showed that even after almost 40 years of exposure to the environment, the tailings still contain pyrite (FeS2) and substantial amounts of copper (Cu) and zinc (Zn). Reactive-transport modeling using Visual MODFLOW predicted that AMD quality would likely continue to deteriorate with time and that treatment should be continued for at least 1,000 years. The model also predicted that a barrier with low permeability installed downstream of the tailings dam or ground sealing techniques for recharge reduction could lower the volume of AMD and concentration of Zn from the site.


Water SA ◽  
2015 ◽  
Vol 41 (5) ◽  
pp. 677 ◽  
Author(s):  
Vhahangwele Masindi ◽  
Mugera Wilson Gitari ◽  
Hlanganani Tutu ◽  
Marinda De Beer

2012 ◽  
Vol 610-613 ◽  
pp. 3252-3256
Author(s):  
Mei Qin Chen ◽  
Feng Ji Wu

Acid mine drainage (AMD) has properties of extreme acidification, quantities of sulfate and elevated levels of soluble heavy metals. It was a widespread environmental problem that caused adverse effects to the qualities of ground water and surface water. In the past decades, most of investigations were focused on the heavy metals as their toxicities for human and animals. As another main constitution of AMD, sulfate ion is nontoxic, yet high concentration of sulfate ion can cause many problems such as soil acidification, metal corrosion and health problems. More attention should be paid on the sulfate ion when people focus on the AMD. In the paper, sulfate removal mechanisms include adsorption, precipitation, co-precipitation and biological reduction were analyzed and summarized. Meanwhile, the remediation technologies, especially the applications of them in China were also presented and discussed.


2019 ◽  
Vol 538 ◽  
pp. 132-141 ◽  
Author(s):  
Guorui Feng ◽  
Jianchao Ma ◽  
Xiaopeng Zhang ◽  
Qingfang Zhang ◽  
Yuqiang Xiao ◽  
...  

2018 ◽  
Vol 30 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Mirabelle Perossi Cunha ◽  
Rafael Marçal Ferraz ◽  
Giselle Patrícia Sancinetti ◽  
Renata Piacentini Rodriguez

2002 ◽  
Vol 36 (19) ◽  
pp. 4757-4764 ◽  
Author(s):  
Matthew M Matlock ◽  
Brock S Howerton ◽  
David A Atwood

2020 ◽  
Vol 989 ◽  
pp. 559-563
Author(s):  
Ashimkhan T. Kanayev ◽  
Khussain Valiyev ◽  
Aleksandr Bulaev

The goal of the present work was to perform bioleaching of uranium from low grade ore from Vostok deposit (Republic of Kazakhstan), which was previously subjected to long-term acid leaching. The ore initially contained from 0.15 to 0.20% of uranium in the form of uraninite, but ore samples used in the study contained about 0.05% of uranium, as it was exhausted during acid leaching, and uranium was partially leached. Representative samples of ore were processed in 1 m columns, leach solutions containing 5, 10, 20 g/L of sulfuric acid and bacterial cells (about 104) were percolated through the ore. Leaching was performed at ambient temperature for 70 days. In one of the percolators, the leaching was performed with leaching solution containing 10 g/L of H2SO4, cells of A. ferrooxidans, and 0.5 g/L of formaldehyde. Leaching with the solution containing 5, 10, and 20 g/L of sulfuric acid made it possible to extract 50, 53, and 58% of uranium. Addition of formaldehyde in leach solution led to the decrease in uranium extraction extent down to 37%. Thus, the results of the present work demonstrated that uranium ore exhausted during long-term acid leaching may be successfully subjected to bioleaching, that allows extracting residual quantities of uranium. Leaching rate of uranium from exhausted ore depended on both sulfuric acid concentration and microbial activity of bacteria isolated from acid mine drainage, formed on uranium deposit. In the same time, acid mine drainage may be used as a source of inoculate, to start bioleaching process.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1081
Author(s):  
Zhou Ran ◽  
Yongtai Pan ◽  
Wenli Liu

The seepage and diffusion of acid mine drainage (AMD) generated from self-heating coal gangue tailings caused acid pollution to the surrounding soil and groundwater. Red mud derived from the alumina smelting process has a high alkali content. To explore the feasibility of co-disposal of coal gangue and red mud for prevention of AMD, coal gangue and red mud were sampled from Yangquan (Shanxi Province, China), and dynamic leaching tests were carried out through the automatic temperature-controlled leaching system under the conditions of different temperatures, mass ratios, and storage methods. Our findings indicated that the heating temperature had a significant effect on the release characteristics of acidic pollutants derived from coal gangue, and that the fastest rate of acid production corresponding to temperature was 150 °C. The co-disposal dynamic leaching tests indicated that red mud not only significantly alleviated the release of AMD but also that it had a long-term effect on the treatment of acid pollution. The mass ratio and stacking method were selected to be 12:1 (coal gangue: red mud) and one layer was alternated (coal gangue covered with red mud), respectively, to ensure that the acid-base pollution indices of leachate reached the WHO drinking-water quality for long-term discharge. The results of this study provided a theoretical basis and data support for the industrial field application of solid waste co-treatment.


Sign in / Sign up

Export Citation Format

Share Document