scholarly journals Critical conditions for the formation of p-type ZnO with Li doping

RSC Advances ◽  
2018 ◽  
Vol 8 (54) ◽  
pp. 30868-30874 ◽  
Author(s):  
Mingge Jin ◽  
Zhibing Li ◽  
Feng Huang ◽  
Yu Xia ◽  
Xu Ji ◽  
...  

The stability of Li dopants in ZnO is studied via first-principles calculations with electric dipole correction.

2018 ◽  
Vol 32 (09) ◽  
pp. 1850105 ◽  
Author(s):  
Xing-Yuan Chen ◽  
Guo-Xia Lai ◽  
Di Gu ◽  
Wei-Ling Zhu ◽  
Tian-Shu Lai ◽  
...  

The XTiO3 (X = Mn, Fe, Co and Ni) materials with R3c structure could be grown under critical conditions based on first-principles calculations and thermodynamic stability analysis. FeTiO3 and MnTiO3 could be synthesized relatively easily under metal-rich and O-poor conditions, while NiTiO3 could be stable under Ni-rich, O-rich and Ti-poor conditions. The predicted R3c CoTiO3 under thermodynamic equilibrium conditions is suggested to be synthesized under Co-rich, O-rich and Ti-poor conditions, but the calculated phonon dispersion indicates R3c CoTiO3 becomes unstable under the dynamical conditions. The ferroelectric behavior in the XTiO3 (X = Mn, Fe, Co and Ni) system could be dominated by the Ti ion with d0 state and the strong hybridization between Ti and O, while the magnetic property is mainly caused by the contribution of 3d transition metal.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


2021 ◽  
Vol 2 (7) ◽  
pp. 2398-2407
Author(s):  
Joshua J. Brown ◽  
Youxiang Shao ◽  
Zhuofeng Ke ◽  
Alister J. Page

First-principles calculations predict the stability and mobility of vacancy defects in niobium perovskite oxynitrides, aiding defect engineering for enhanced photocatalysis.


1998 ◽  
Vol 537 ◽  
Author(s):  
Fernando A. Reboredo ◽  
Sokrates T. Pantelides

AbstractIt is well known that hydrogen plays a key role in p-type doping of GaN. It is believed that H passivates substitutional Mg during growth by forming a Mgs-N-Hi complex; in subsequent annealing, H is removed, resulting in p-type doping. Several open questions have remained, however, such as experimental evidence for other complexes involving Mg and H and difficulties in accounting for the relatively high-temperature anneal needed to remove H. We present first principles calculations in terms of which we show that the doping process is in fact significantly more complex. In particular, interstitial Mg plays a major role in limiting p-type doping. Overall, several substitutional/interstitial complexes form and can bind H, with vibrational frequencies that account for hitherto unidentified observed lines. We predict that these defects, which limit doping efficiency, can be eliminated by annealing in an atmosphere of H and N prior to the final anneal that removes H.


2016 ◽  
Vol 30 (20) ◽  
pp. 1650257
Author(s):  
Meng Zhao ◽  
Wenjun Wang ◽  
Jun Wang ◽  
Junwei Yang ◽  
Weijie Hu ◽  
...  

Various Be:O-codoped AlN crystals have been investigated via first-principles calculations to evaluate the role of the different combinations in effectively and efficiently inducing p-type carriers. It is found that the O atom is favored to bond with two Be atoms. The formed Be2:O complexes decrease the acceptor ionization energy to 0.11 eV, which is 0.16 eV lower than that of an isolated Be in AlN, implying that the hole concentration could probably be increased by 2–3 orders of magnitude. The electronic structure of Be2:O-codoped AlN shows that the lower ionization energy can be attributed to the interaction between Be and O. The Be–O complexes, despite failing to induce p-type carriers for the mutual compensation of Be and O, introduce new occupied states on the valence-band maximum (VBM) and hence the energy needed for the transition of electrons to the acceptor level is reduced. Thus, the Be2:O codoping method is expected to be an effective and efficient approach to realizing p-type AlN.


2016 ◽  
Vol 94 (3) ◽  
Author(s):  
M. Miorelli ◽  
S. Bacca ◽  
N. Barnea ◽  
G. Hagen ◽  
G. R. Jansen ◽  
...  

2020 ◽  
Vol 7 (12) ◽  
pp. 200723
Author(s):  
Hai Duong Pham ◽  
Wu-Pei Su ◽  
Thi Dieu Hien Nguyen ◽  
Ngoc Thanh Thuy Tran ◽  
Ming-Fa Lin

The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2 p z –3 p z and [2s, 2 p x , 2 p y ]–[3s, 3 p x , 3 p y ] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/ π bands/ σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.


Sign in / Sign up

Export Citation Format

Share Document