The photo-, electro- and photoelectro-catalytic properties and application prospects of porous coordinate polymers

2018 ◽  
Vol 6 (15) ◽  
pp. 6130-6154 ◽  
Author(s):  
Haolin Zhu ◽  
Dingxin Liu ◽  
Dianting Zou ◽  
Jianyong Zhang

Since the discovery of metal–organic frameworks (MOFs), covalent–organic frameworks (COFs) and zeolite–imidazole frameworks (ZIFs), many of their outstanding properties have been explored such as their large specific surface area, significant gas adsorption, and high catalytic activity.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Jiaqi Wang ◽  
Yiling Quan ◽  
Guoxiang Wang ◽  
Dazhi Wang ◽  
Jie Xiao ◽  
...  

Metal–organic frameworks (MOFs) attracted considerable attention through their large specific surface area and excellent adjustable voids. A one-step solvothermal method is proposed herein to fabricate the 3D hollow cage copper-cobalt...


Nanoscale ◽  
2015 ◽  
Vol 7 (2) ◽  
pp. 720-726 ◽  
Author(s):  
Jian Zhang ◽  
Liangjun Wang ◽  
Leilei Xu ◽  
Xiaoming Ge ◽  
Xiao Zhao ◽  
...  

Porous cathode catalyst: the porous cobalt–manganese oxide nanocubes catalyst with large specific surface area and good electrochemical activity endows Li–O2 battery with good ORR/OER activity (reduced voltage gap), improved rate performance and excellent cycle stability.


Nanoscale ◽  
2021 ◽  
Author(s):  
Yadan Zheng ◽  
Xiaoyuan Zhang ◽  
Zhiqiang Su

Metal-organic frameworks are a class of new and promising anti-cancer materials. MOFs with adjustable pore size, large specific surface area, diverse structure, and excellent chemical and physical properties make them...


2017 ◽  
Vol 5 (10) ◽  
pp. 4835-4841 ◽  
Author(s):  
Pradip Pachfule ◽  
Xinchun Yang ◽  
Qi-Long Zhu ◽  
Nobuko Tsumori ◽  
Takeyuki Uchida ◽  
...  

High-temperature pyrolysis of Ru nanoparticle-encapsulated MOF (Ru@HKUST-1) afforded ultrafine Cu/Ru nanoparticle-embedded porous carbon composites (Cu/Ru@C), which show high catalytic activity for ammonia borane hydrolysis.


2021 ◽  
Vol 1036 ◽  
pp. 130-136
Author(s):  
Ting Qun Tan ◽  
Lei Geng ◽  
Yan Lin ◽  
Yan He

In order to prepare carbon nanotubes with high specific surface area, small diameter, low resistivity, high purity and high catalytic activity, the Fe-Mo/Al2O3 catalyst was prepared based on the microreactor. The influence of different Fe/Al molar ratios on the catalyst and the carbon nanotubes prepared was studied through BET, SEM, TEM and other detection methods. Studies have shown that the pore structure of the catalyst is dominated by slit pores at a lower Fe/Al molar ratio. The catalytic activity is the highest when the Fe/Al molar ratio is 1:1, reaching 74.1%. When the Fe/Al molar ratio is 1:2, the catalyst has a higher specific surface area, the maximum pore size is 8.63 nm, and the four-probe resistivity and ash content of the corresponding carbon nanotubes are the lowest. The higher the proportion of aluminum, the higher the specific surface area of the catalyst and the carbon nanotubes, and the finer the diameter of the carbon nanotubes, which gradually tends to relax. The results show that when the Fe/Al molar ratio is 1:2, although the catalytic activity of the catalyst is not the highest, the carbon nanotubes prepared have the best performance.


2021 ◽  
Author(s):  
Zhanke Wang ◽  
Lei Ge ◽  
Guangxu Zhang ◽  
Rongrong Gao ◽  
Hao Wang ◽  
...  

A novel dissolution-crystallization strategy was developed to synthesize urchin-like superstructure metal-organic frameworks (MOFs) with self-assembled 1D nanorods. The superstructure MOFs not only inherit the high activity of nano-sized MOFs but...


2019 ◽  
Vol 6 (7) ◽  
pp. 190634 ◽  
Author(s):  
Ji Ping Zhu ◽  
Xiu Hao Wang ◽  
Xiu Xiu Zuo

Metal-organic frameworks (MOFs) have gained increased attention due to their unique features, including tunable pore sizes, controllable structures and a large specific surface area. In addition to their application in gas adsorption and separation, hydrogen storage, optics, magnetism and organic drug carriers, MOFs also can be used in batteries and supercapacitors which have attracted the researcher's attention. Based on recent studies, this review describes the latest developments about MOFs as battery electrode materials which are used in lithium–ion and lithium–sulfur batteries.


2012 ◽  
Vol 427 ◽  
pp. 123-127
Author(s):  
Yuan Hui Ma ◽  
Lei Zhang ◽  
Cheng Chun Tang

The nanoporous metal-organic frameworks were synthesized under solvothermal conditions using organic solvent dimethylformamide. The samples were characterized by XRD, SEM, TGA, FT-IR and specific surface area for their properties difference. When the reaction temperature rises, the particle size becomes larger. All TGA curves are the basically same, the framework structure begins to be destroyed from 500°C up to around 600°C. The metal-organic frameworks accepted at reaction temperature 190°C have larger specific surface area and better structure stability.


Clay Minerals ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Bo Xue ◽  
Hongmei Guo ◽  
Lujie Liu ◽  
Min Chen

AbstractA new yttrium-zirconium-pillared montmorillonite (Y-Zr-MMT), was synthesized, characterized and used as a Ce catalyst support. The Y-Zr-MMT is a good support for dispersing cerium active sites and it is responsible for the high activity in the total oxidation of acetone, toluene and ethyl acetate. The Y-Zr-MMT shows greater advantages than the conventional alumina/cordierite honeycomb supports such as large specific surface area, lower cost and easier preparation. Catalytic tests demonstrated that Ce/Y-Zr-MMT (Ce loading 8.0%) was the most active, with the total oxidation of acetone, toluene and ethyl acetate being achieved at 220, 300 and 220°C, respectively. The catalyst displayed better activity for the oxidation of acetone and ethyl acetate than a conventional, supported Pd-catalyst under similar conditions. The special structure of the yttrium-doped zirconium-pillared montmorillonite can strengthen the interaction between the CeO2 and Zr-MMT support and improve the dispersion of the Ce particles, which enhances the catalytic activity for the oxidation of VOCs. The new catalyst, 8.0%Ce/Y-Zr-MMT, could be promising for industrial applications due to its high catalytic activity and low cost. The support and the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET specific surface area measurements.


Sign in / Sign up

Export Citation Format

Share Document