Stimuli-responsive multifunctional metal–organic framework nanoparticles for enhanced chemo-photothermal therapy

2019 ◽  
Vol 7 (6) ◽  
pp. 994-1004 ◽  
Author(s):  
Jie Feng ◽  
Zhen Xu ◽  
Ping Dong ◽  
Wenqian Yu ◽  
Feng Liu ◽  
...  

Programmable metal–organic frameworks were prepared as efficient delivery vehicles for targeted and stimuli-responsive release of multi-therapeutics with excellent antitumor activity.

2020 ◽  
Vol 17 ◽  
Author(s):  
Ailing Feng ◽  
Yanni Wang ◽  
Jinzi Ding ◽  
Rong Xu ◽  
Xiaodong Li

Background: Development of controlled drug delivery systems can improve the pharmacokinetic characteristics of drug molecules in the human body, thereby significantly improving the utilization rate of drugs and reducing toxicity and side effects caused by high concentrations of drugs, which can occur when delivery is not controlled. Metal organic frameworks are a new class of very promising crystalline microporous materials, especially when the size is reduced to the nanometer range. Metal organic frameworks exhibit large specific surface areas, tunable compositions, and easy functionalization. In recent years, increasing number of studies have reported the remarkable advances in multifunctional nanoscale metal organic frameworks in drug delivery. Objective: Review the latest research involving advances in stimuli-responsive nanoscale metal organic frameworks as drug delivery systems in controlled-release drugs. Discussion: We first introduce the two main strategies associated with nanoscale metal organic frameworks used in drug loading: direct assembly and post-encapsulation. We next focus on the latest discoveries of nanoscale metal organic framework-based stimulus response systems for drug delivery, including pH, magnetics, light, ion, temperature, and other stimuli, as well as multiple stimulus-responsive drug delivery systems. Finally, we discuss the challenges and future development directions of nanoscale metal organic framework-based controlled drug release.


2019 ◽  
Vol 26 (18) ◽  
pp. 3341-3369 ◽  
Author(s):  
Zhidong Luo ◽  
Shuran Fan ◽  
Chuying Gu ◽  
Weicong Liu ◽  
Jinxiang Chen ◽  
...  

Background: Metal-organic frameworks (MOFs), as a new class of porous organic-inorganic crystalline hybrid materials that governed by the self-assembled of metal atoms and organic struts have attracted tremendous attention because of their special properties. Recently, some more documents have reported different types of nanoscale metal-organic frameworks (NMOFs) as biodegradable and physiological pH-responsive systems for photothermal therapy and radiation therapy in the body. Discussion: n this review paper aims at describing the benefits of using MOF nanoparticles in the field of biomedicine, and putting into perspective their properties in the context of the ones of other NPs. The first section briefly reviews the biomaterial scaffolds of MOFs. The second section presents the main types of stimuli-responsive mechanisms and strategies from two categories: intrinsic (pH, redox state) and extrinsic (temperature, light irradiation and magnetic field) ones. The combinations of photothermal therapy and radiation therapy have been concluded in detail. Finally, clinical applications of MOFs, future challenges and perspectives are also mentioned. Conclusion: This review outlines the most recent advances MOFs design and biomedical applications, from different synthesis to their use as smart drug delivery systems, bioimaging technology or a combination of both.


2021 ◽  
Author(s):  
jorge Albalad ◽  
Ricardo Peralta ◽  
Michael Huxley ◽  
Steven Tsoukatos ◽  
Zhaolin Shi ◽  
...  

Stimuli-responsive metal-organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a...


2020 ◽  
Author(s):  
Jesse Park ◽  
Brianna Collins ◽  
Lucy Darago ◽  
Tomce Runcevski ◽  
Michael Aubrey ◽  
...  

<b>Materials that combine magnetic order with other desirable physical attributes offer to revolutionize our energy landscape. Indeed, such materials could find transformative applications in spintronics, quantum sensing, low-density magnets, and gas separations. As a result, efforts to design multifunctional magnetic materials have recently moved beyond traditional solid-state materials to metal–organic solids. Among these, metal–organic frameworks in particular bear structures that offer intrinsic porosity, vast chemical and structural programmability, and tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating strong magnetic exchange in extended metal–organic solids. Here, we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at <i>T</i><sub>C</sub> = 225 K in a mixed-valence chromium(II/III) triazolate compound, representing the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism is shown to proceed via a double-exchange mechanism, the first such observation in any metal–organic material. Critically, this mechanism results in variable-temperature conductivity with barrierless charge transport below <i>T</i><sub>C</sub> and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. Taken together, the insights gleaned from these results are expected to provide a blueprint for the design and synthesis of porous materials with synergistic high-temperature magnetic and charge transport properties. </b>


2020 ◽  
Vol 24 (16) ◽  
pp. 1876-1891
Author(s):  
Qiuyun Zhang ◽  
Yutao Zhang ◽  
Jingsong Cheng ◽  
Hu Li ◽  
Peihua Ma

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.


2021 ◽  
Author(s):  
Fajar Inggit Pambudi ◽  
Michael William Anderson ◽  
Martin Attfield

Atomic force microscopy has been used to determine the surface crystal growth of two isostructural metal-organic frameworks, [Zn2(ndc)2(dabco)] (ndc = 1,4-naphthalene dicarboxylate, dabco = 4-diazabicyclo[2.2.2]octane) (1) and [Cu2(ndc)2(dabco)] (2) from...


2021 ◽  
Vol 9 (7) ◽  
pp. 1811-1820
Author(s):  
Shuang Yan ◽  
Bin Luo ◽  
Jia He ◽  
Fang Lan ◽  
Yao Wu

Novel bimetallic metal–organic framework nanocomposites were fabricated by a facile yet efficient method. The as-prepared nanomaterial exhibited high sensitivity and high selectivity toward phosphopeptides and good reusability of five cycles for enriching phosphopeptides.


Author(s):  
Marta Lara-Serrano ◽  
Silvia Morales-delaRosa ◽  
Jose M. Campos-Martin ◽  
Víctor Karim Abdelkader-Fernández ◽  
Luis Cunha-Silva ◽  
...  

The isomerization reaction of glucose to fructose was studied using five selected metal-organic frameworks (MOFs) as catalysts and a mixture of γ-valerolactone and 10% H2O as the solvent. MOFs with...


Author(s):  
Jiajun Song ◽  
Jianzhong Zheng ◽  
Anneng Yang ◽  
Hong Liu ◽  
Zeyu Zhao ◽  
...  

Two-dimensional (2D) conductive metal-organic frameworks (MOFs) can not only inherit the high porosity and tailorability of traditional MOFs but also exhibit unique charge transport properties, offering promising opportunities for applications...


2021 ◽  
Vol 5 (4) ◽  
pp. 101
Author(s):  
Menglian Wei ◽  
Yu Wan ◽  
Xueji Zhang

Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.


Sign in / Sign up

Export Citation Format

Share Document