Electronically-tuned triarylmethine scaffolds for fast and continuous monitoring of H2S levels in biological samples

The Analyst ◽  
2019 ◽  
Vol 144 (14) ◽  
pp. 4210-4218
Author(s):  
Ramshad Kalluruttimmal ◽  
Divya Thekke Thattariyil ◽  
Archana Panthalattu Parambil ◽  
Ashis Kumar Sen ◽  
Lakshmi Chakkumkumarath ◽  
...  

A fast and reliable spectrophotometric method for the selective detection and quantification of H2S in biological samples is presented.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Raphael Reinbold ◽  
Tobias John ◽  
Paolo Spingardi ◽  
Akane Kawamura ◽  
Amber L. Thompson ◽  
...  

AbstractFormaldehyde (HCHO) is a simple and highly reactive human metabolite but its biochemistry is poorly defined. A limiting factor in HCHO research is lack of validated quantification methods for HCHO relevant to biological samples. We describe spectroscopic studies on a reported fluorescence-based HCHO detection method involving its reaction with ampicillin. The results validate the structure and fluorescence properties of the HCHO-ampicillin reaction product. However, the same adduct is observed after reaction of ampicillin with glyoxylate. Related fluorophores were formed with other biologically relevant carbonyl compounds. Overall, our studies suggest the ampicillin method is not reliable for selective detection and quantification of HCHO in biological samples.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohsen Keyvanfard ◽  
Khadijeh Alizad ◽  
Razieh Shakeri

A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG). The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1SCG. The limit of detection is 2.7 ng mL−1SCG. The relative standard deviation (RSD) for ten replicate analyses of 12, 20, and 28 ng mL−1SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.


1997 ◽  
Vol 80 (2) ◽  
pp. 388-391 ◽  
Author(s):  
Ritu Kesari ◽  
Manish Rai ◽  
Vinay Kumar Gupta

Abstract A sensitive spectrophotometric method was developed for determination of paraquat, a widely used herbicide. Paraquat was reduced with glucose in an alkaline medium, and the blue radical ion obtained was measured at 600 nm. Beer’s law was obeyed at 0.1–1.2 ppm paraquat. The molar absorptivity was 1.26 × 105 L mol-1 cm-1. The standard deviation and relative standard deviation were ± 0.007 and 2.0%, respectively, for 5 μg paraquat/10 mL analyzed over 7 days. The method was free from interference by other commonly used pesticides and metal ions. The method may be used to the determine paraquat in plants, fruits, grains, water, blood, and urine.


2021 ◽  
Vol 160 ◽  
pp. 105750
Author(s):  
Ramachandran Rajakumaran ◽  
Alagumalai Krishnapandi ◽  
Shen-Ming Chen ◽  
Karuppaiah Balamurugan ◽  
Fu Mao Chang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Kumble Divya ◽  
Badiadka Narayana ◽  
Majal Sapnakumari

A new spectrophotometric method is developed for the determination of Paracetamol (PCT) and protriptyline HCl (PTP) in pure forms and in pharmaceutical formulations. The experiment involves the use of 3-chloro-7-hydroxy-4-methyl-2H-chromen-2-one as a novel chromogenic reagent for the determination of PCT and PTP. The method is based on the formation of charge transfer complex between the drugs and chromogenic reagent. Beer's law is obeyed in the concentration ranges 10.00–60.00 µg mL−1 for PCT at 545 nm and 40.00–160.00 µg mL−1 for PTP at 468 nm. The molar absorptivity, Sandell, sensitivity, and limit of detection and quantification are also calculated. The method has been successfully applied for the determination of both PCT and PTP in pharmaceutical samples with acceptable results.


Sign in / Sign up

Export Citation Format

Share Document