Double stranded DNA-templated copper nanoclusters as a novel fluorescent probe for label-free detection of rutin

2019 ◽  
Vol 11 (28) ◽  
pp. 3584-3589 ◽  
Author(s):  
Yanqiong Lai ◽  
Xia Teng ◽  
Yanli Zhang ◽  
Hongbin Wang ◽  
Pengfei Pang ◽  
...  

In this study, we developed a simple, sensitive, low-cost and label-free method to detect rutin by using double-stranded DNA-templated copper nanoclusters (dsDNA-CuNCs) as a fluorescent probe.

Talanta ◽  
2019 ◽  
Vol 195 ◽  
pp. 372-380 ◽  
Author(s):  
Xinge Li ◽  
Xiaoman Wu ◽  
Fei Zhang ◽  
Bing Zhao ◽  
Yan Li

2017 ◽  
Vol 22 (10) ◽  
pp. 1246-1252 ◽  
Author(s):  
Kishore Kumar Jagadeesan ◽  
Simon Ekström

Recently, mass spectrometry (MS) has emerged as an important tool for high-throughput screening (HTS) providing a direct and label-free detection method, complementing traditional fluorescent and colorimetric methodologies. Among the various MS techniques used for HTS, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides many of the characteristics required for high-throughput analyses, such as low cost, speed, and automation. However, visualization and analysis of the large datasets generated by HTS MALDI-MS can pose significant challenges, especially for multiparametric experiments. The datasets can be generated fast, and the complexity of the experimental data (e.g., screening many different sorbent phases, the sorbent mass, and the load, wash, and elution conditions) makes manual data analysis difficult. To address these challenges, a comprehensive informatics tool called MALDIViz was developed. This tool is an R-Shiny-based web application, accessible independently of the operating system and without the need to install any program locally. It has been designed to facilitate easy analysis and visualization of MALDI-MS datasets, comparison of multiplex experiments, and export of the analysis results to high-quality images.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 15
Author(s):  
Bukola Attoye ◽  
Matthew Baker ◽  
Chantevy Pou ◽  
Fiona Thomson ◽  
Damion K. Corrigan

Liquid biopsies are becoming increasingly important as a potential replacement for existing biopsy procedures which can be invasive, painful and compromised by tumour heterogeneity. This paper reports a simple electrochemical approach tailored towards point-of-care cancer detection and treatment monitoring from biofluids using a label-free detection strategy. The mutations under test were the KRAS G12D and G13D mutations, which are both important in the development and progression of many human cancers and which have a presence that correlates with poor outcomes. These common circulating tumour markers were investigated in clinical samples and amplified by standard and specialist PCR methodologies for subsequent electrochemical detection. Following pre-treatment of the sensor to present a clean surface, DNA probes developed specifically for detection of the KRAS G12D and G13D mutations were immobilized onto low-cost carbon electrodes using diazonium chemistry and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide coupling. Following the functionalisation of the sensor, it was possible to sensitively and specifically detect a mutant KRAS G13D PCR product against a background of wild-type KRAS DNA from the representative cancer sample. Our findings give rise to the basis of a simple and very low-cost system for measuring ctDNA biomarkers in patient samples. The current time to result of the system was 3.5 h with considerable scope for optimisation, and it already compares favourably to the UK National Health Service biopsy service where patients can wait weeks for their result. This paper reports the technical developments we made in the production of consistent carbon surfaces for functionalisation, assay performance data for KRAS G13D and detection of PCR amplicons under ambient conditions.


NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850057 ◽  
Author(s):  
Jing Liu ◽  
Xiao Li ◽  
Xin Gong ◽  
Taiping Qing ◽  
Peng Zhang ◽  
...  

The incorporation of dopant atoms alters the structure of MoS2, resulting in unique properties and practical applications. Herein, a facile and low-cost approach for producing N-doped molybdenum disulfide (N-MoS[Formula: see text] was carried out using melamine and MoS2 in a laboratory tube furnace at 400[Formula: see text]C for 2[Formula: see text]h. The N-MoS2 fluorescent probe showed sensitive response to Hg[Formula: see text] in a wide concentration range of 0.4–10[Formula: see text][Formula: see text]M with a low limit of 28[Formula: see text]nM. The practical applicability of detecting Hg[Formula: see text] in lake water samples may open a new way to evaluate Hg[Formula: see text] in wastewater.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Sooraj Sanjay ◽  
Mainul Hossain ◽  
Ankit Rao ◽  
Navakanta Bhat

AbstractIon-sensitive field-effect transistors (ISFETs) have gained a lot of attention in recent times as compact, low-cost biosensors with fast response time and label-free detection. Dual gate ISFETs have been shown to enhance detection sensitivity beyond the Nernst limit of 59 mV pH−1 when the back gate dielectric is much thicker than the top dielectric. However, the thicker back-dielectric limits its application for ultrascaled point-of-care devices. In this work, we introduce and demonstrate a pH sensor, with WSe2(top)/MoS2(bottom) heterostructure based double gated ISFET. The proposed device is capable of surpassing the Nernst detection limit and uses thin high-k hafnium oxide as the gate oxide. The 2D atomic layered structure, combined with nanometer-thick top and bottom oxides, offers excellent scalability and linear response with a maximum sensitivity of 362 mV pH−1. We have also used technology computer-aided (TCAD) simulations to elucidate the underlying physics, namely back gate electric field screening through channel and interface charges due to the heterointerface. The proposed mechanism is independent of the dielectric thickness that makes miniaturization of these devices easier. We also demonstrate super-Nernstian behavior with the flipped MoS2(top)/WSe2(bottom) heterostructure ISFET. The results open up a new pathway of 2D heterostructure engineering as an excellent option for enhancing ISFET sensitivity beyond the Nernst limit, for the next-generation of label-free biosensors for single-molecular detection and point-of-care diagnostics.


2020 ◽  
Vol 316 ◽  
pp. 128072 ◽  
Author(s):  
Kaiwu Zhang ◽  
Xuan Wang ◽  
Caicheng Long ◽  
Jin Xu ◽  
Zixin Jiang ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
JingJing Fu ◽  
ZhuanZhuan Shi ◽  
Man Li ◽  
Yangyang Wang ◽  
Ling Yu

The chondroitin sulphate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA), is a tumor-associated antigen that is expressed in more than 85% of surgically removed melanoma lesions but has restricted distribution in normal tissues. The diagnostic and therapeutic value of CSPG4 drives a need for sensitive and low-cost detection approaches. To this end, we developed a polyaniline/graphene oxide nanocomposite (PANI@GO) that was electrochemically codeposited on indium tin oxide (ITO) electrode. Glutaraldehyde mediated the covalent immobilization of CSPG4 specific antibody mAbD2.8.5 to construct a CSPG4 immunosensor using cell culture media and cell lysate as samples. The fully assembled impedimetric immunosensor was used to detect CSPG4 in CSPG4-positive cell lines M14/CSPG4 and MV3. No impedance signal changes could be observed from CSPG4-negative cell lines M14 and mAbMk2-23 showing the specificity of the CSPG4-impedimetric immunosensor. This low-cost, simple, and label-free analytical method is an alternative to enzyme-linked immunosorbent assay and flow cytometry in screening of CSPG4 in complex biological samples.


2018 ◽  
Vol 62 ◽  
pp. 163-167 ◽  
Author(s):  
Jin Woo Kim ◽  
Yoon-ha Jang ◽  
Gwang Mo Ku ◽  
Seunghyun Kim ◽  
Eunho Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document