The Br⋯π halogen bond assisted self-assembly of an asymmetric molecule regulated by concentration

2020 ◽  
Vol 56 (18) ◽  
pp. 2727-2730 ◽  
Author(s):  
Juntian Wu ◽  
Jinxing Li ◽  
Xinrui Miao ◽  
Lei Ying ◽  
Meiqiu Dong ◽  
...  

An asymmetric halogenated molecule self-assembles into different patterns with different weak interactions, which further leads to variations in the coverages of the different structures.

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2312
Author(s):  
Sébastien Lyonnais ◽  
S. Kashif Sadiq ◽  
Cristina Lorca-Oró ◽  
Laure Dufau ◽  
Sara Nieto-Marquez ◽  
...  

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular ‘sponges’, stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak–strong–moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.


Author(s):  
Ruben D. Parra ◽  
Álvaro Castillo

The geometries and energetics of molecular self-assembly structures that contain a sequential network of cyclic halogen-bonding interactions are investigated theoretically. The strength of the halogen-bonding interactions is assessed by examining binding energies, electron charge transfer (NBO analysis) and electron density at halogen-bond critical points (AIM theory). Specifically, structural motifs having intramolecular N—X...N (X= Cl, Br, or I) interactions and the ability to drive molecular self-assemblyviathe same type of interactions are used to construct larger self-assemblies of up to three unit motifs. N—X...N halogen-bond cooperativity as a function of the self-assembly size, and the nature of the halogen atom is also examined. The cyclic network of the halogen-bonding interactions provides a suitable cavity rich in electron density (from the halogen atom lone pairs not involved in the halogen bonds) that can potentially bind an electron-deficient species such as a metal ion. This possibility is explored by examining the ability of the N—X...N network to bind Na+. Likewise, molecular self-assembly structures driven by the weaker C—X...N halogen-bonding interactions are investigated and the results compared with those of their N—X...N counterparts.


2018 ◽  
Vol 42 (13) ◽  
pp. 10461-10462 ◽  
Author(s):  
Giuseppe Resnati ◽  
William T. Pennington
Keyword(s):  

Welcome to this themed issue of NJC entitled: ‘The halogen bond: a new avenue in recognition and self-assembly’.


Daxue Huaxue ◽  
2017 ◽  
Vol 32 (5) ◽  
pp. 44-48
Author(s):  
Heng ZHANG ◽  
◽  
Ying MA ◽  
Gang LIU ◽  
Qi-Sheng SONG ◽  
...  

2020 ◽  
Vol 124 (10) ◽  
pp. 5665-5671 ◽  
Author(s):  
Peng Pang ◽  
Xinrui Miao ◽  
Lei Ying ◽  
Gang Kong ◽  
Chunshan Che ◽  
...  
Keyword(s):  

2014 ◽  
Vol 70 (a1) ◽  
pp. C630-C630
Author(s):  
Giuseppe Resnati ◽  
Pierangelo Metrangolo ◽  
Giancarlo Terraneo ◽  
Gabriella Cavallo

According to the definition recommended by IUPAC [1], a halogen bond (XB) occurs when there is evidence of a net attractive interaction between an electrophilic region in a halogen atom and a nucleophilic region in another atom. The halogen bond has many similarities with the hydrogen bond (HB) and here we discuss the specific profile of the two interactions. We also show how the cooperation between the two interactions afford crystalline systems possessing unique and useful properties. For instance, the diiodide, dibromide, and dichloride salts of the 1,6-bis(trimethylammonium)hexane cation (hexamethonium, HMET2+, cation) react with two equivalents of diiodine in a solid-gas reaction and the corresponding bis-trihalides (halogen bonded adducts) are formed [2]. No cavities are present in the starting dihalides and the observed behavior reveals the dynamically porous character of bis(trimethylammonium)alkane dihalides. In the obtained bis-trihalides a net of X-···H-C HBs (X=Cl, Br, I) plays a decisive role in controlling the crystal packing: Four cationic columns embrace an anionic twin column formed by stacking of trihalide dimers. When heated, these bis-trihalides lose one diiodine molecule and the virtually unknown tetrahalide dianions [I4]2-, [I2Br2] 2-, and [I2Cl2]2-are formed. These dianions are the product of the double pinning of a diiodine molecule by two halide anions via strong XBs. The last two tetrahalides were never obtained in solution. The confined environment of dynamically porous materials clearly confers useful synthetic opportunities relative to solution-state processes. Other cases are described wherein XB and HB cooperate in driving self-assembly processes which afford solid materials endowed with useful properties. For instance, we will discuss the formation of two-component supramolecular gels [3] wherein a bis-urea and a diiodoarene self-assemble via cooperative XB and HB.


2018 ◽  
Vol 433 ◽  
pp. 1075-1082 ◽  
Author(s):  
Xinrui Miao ◽  
Jinxing Li ◽  
Bao Zha ◽  
Kai Miao ◽  
Meiqiu Dong ◽  
...  

2005 ◽  
Vol 77 (11) ◽  
pp. 1851-1863 ◽  
Author(s):  
François Diederich

Functional π-systems with unusual opto-electronic properties are intensively investigated from both fundamental research and technological application viewpoints. This article reports on novel π-conjugated systems obtained by acetylenic and fullerene scaffolding. Linearly conjugated acetylenic nanorods, consisting of monodisperse poly(triacetylene) (PTA) oligomers and extending up to 18 nm length, were prepared to investigate the limits of effective conjugation and to explore at which length a monodisperse oligomer reaches the properties of an infinite polydisperse polymer. With the cyanoethynylethenes (CEEs), a powerful new class of electron acceptors is introduced that undergo intense intramolecular charge-transfer (CT) interactions with appended donors. Macrocyclic scaffolds with unusual opto-electronic properties are perethynylated dehydroannulenes, expanded radialenes, and radiaannulenes bearing peripheral dialkylanilino donor groups. Extended porphyrin-fullerene conjugates are investigated for their novel photophysical and efficient multicharge storage properties. Self-assembly of fullerenes and porphyrins, governed by weak interactions between the two components, leads to unprecedented nanopatterned surfaces that are investigated by scanning tunneling microscopy (STM).


Sign in / Sign up

Export Citation Format

Share Document