Magnetic chains of Fe3 clusters in the {Fe3YO2} butterfly molecular compound

2020 ◽  
Vol 49 (9) ◽  
pp. 2979-2988
Author(s):  
Javier Rubín ◽  
Laura Badía-Romano ◽  
Fernando Luis ◽  
Valeriu Mereacre ◽  
Denis Prodius ◽  
...  

Supramolecular magnetic chains of Fe3 cluster in a molecular complex.

Author(s):  
Keiichi Tanaka ◽  
Yasuki Endo ◽  
Masakazu Nakajima ◽  
Yoshihiro Sumiyoshi ◽  
Kensuke Harada

2021 ◽  
Author(s):  
Claire Deville ◽  
Henrik Særkjær Jeppesen ◽  
Vickie McKee ◽  
Nina Lock

Controlled bottom-up synthesis of amorphous coordination polymers with tailored metal coordination is a research field in its infancy. In this study, synthesis control was achieved to selectively prepare one-dimensional (1D)...


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
Muhammad Shaukat Khan ◽  
Hunain Farooq ◽  
Christopher Wittmund ◽  
Stephen Klimke ◽  
Roland Lachmayer ◽  
...  

We report on a polymer-waveguide-based temperature sensing system relying on switchable molecular complexes. The polymer waveguide cladding is fabricated using a maskless lithographic optical system and replicated onto polymer material (i.e., PMMA) using a hot embossing device. An iron-amino-triazole molecular complex material (i.e., [Fe(Htrz)2.85(NH2-trz)0.15](ClO4)2) is used to sense changes in ambient temperature. For this purpose, the core of the waveguide is filled with a mixture of core material (NOA68), and the molecular complex using doctor blading and UV curing is applied for solidification. The absorption spectrum of the molecular complex in the UV/VIS light range features two prominent absorption bands in the low-spin state. As temperature approaches room temperature, a spin-crossover transition occurs, and the molecular complex changes its color (i.e. spectral properties) from violet-pink to white. The measurement of the optical power transmitted through the waveguide as a function of temperature exhibits a memory effect with a hysteresis width of approx. 12 °C and sensitivity of 0.08 mW/°C. This enables optical rather than electronic temperature detection in environments where electromagnetic interference might influence the measurements.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 439
Author(s):  
Monika Rzonsowska ◽  
Katarzyna Kozakiewicz ◽  
Katarzyna Mituła ◽  
Julia Duszczak ◽  
Maciej Kubicki ◽  
...  

A synthesis of a series of mono-T8 and difunctionalized double-decker silsesquioxanes bearing substituted triazole ring(s) has been reported within this work. The catalytic protocol for their formation is based on the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) process. Diverse alkynes were in the scope of our interest—i.e., aryl, hetaryl, alkyl, silyl, or germyl—and the latter was shown to be the first example of terminal germane alkyne which is reactive in the applied process’ conditions. From the pallet of 15 compounds, three of them with pyridine-triazole and thiophenyl-triazole moiety attached to T8 or DDSQ core were verified in terms of their coordinating properties towards selected transition metals, i.e., Pd(II), Pt(II), and Rh(I). The studies resulted in the formation of four SQs based coordination compounds that were obtained in high yields up to 93% and their thorough spectroscopic characterization is presented. To our knowledge, this is the first example of the DDSQ-based molecular complex possessing bidentate pyridine-triazole ligand binding two Pd(II) ions.


Author(s):  
Ekaterina Mamontova ◽  
María Rodríguez-Castillo ◽  
Erwan Oliviero ◽  
Yannick Guari ◽  
Joulia Larionova ◽  
...  

We report in this article new magneto-plasmonic core@satellites Prussian Blue Analogue (PBA)@Au-Ag nanoheterostructures obtained by using a post-synthetic impregnation of a bimetallic [AuI2AgI2(C6F5)4(OEt2)2]n molecular complex with the ferromagnetic K+/Ni2+/[Cr(CN)6]3− PBA...


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Kaili Long ◽  
Lili Gu ◽  
Lulu Li ◽  
Ziyu Zhang ◽  
Enjie Li ◽  
...  

AbstractApurinic/apyrimidinic endonuclease 1 (APE1) plays a critical role in the base excision repair (BER) pathway, which is responsible for the excision of apurinic sites (AP sites). In non-small cell lung cancer (NSCLC), APE1 is highly expressed and associated with poor patient prognosis. The suppression of APE1 could lead to the accumulation of unrepaired DNA damage in cells. Therefore, APE1 is viewed as an important marker of malignant tumors and could serve as a potent target for the development of antitumor drugs. In this study, we performed a high-throughput virtual screening of a small-molecule library using the three-dimensional structure of APE1 protein. Using the AP site cleavage assay and a cell survival assay, we identified a small molecular compound, NO.0449-0145, to act as an APE1 inhibitor. Treatment with NO.0449-0145 induced DNA damage, apoptosis, pyroptosis, and necroptosis in the NSCLC cell lines A549 and NCI-H460. This inhibitor was also able to impede cancer progression in an NCI-H460 mouse model. Moreover, NO.0449-0145 overcame both cisplatin- and erlotinib-resistance in NSCLC cell lines. These findings underscore the importance of APE1 as a therapeutic target in NSCLC and offer a paradigm for the development of small-molecule drugs that target key DNA repair proteins for the treatment of NSCLC and other cancers.


Sign in / Sign up

Export Citation Format

Share Document