scholarly journals Physical effects of dietary fibre on simulated luminal flow, studied byin vitrodynamic gastrointestinal digestion and fermentation

2019 ◽  
Vol 10 (6) ◽  
pp. 3452-3465 ◽  
Author(s):  
Alba Tamargo ◽  
Carolina Cueva ◽  
M. Dolores Alvarez ◽  
Beatriz Herranz ◽  
M. Victoria Moreno-Arribas ◽  
...  

During the transit through the gastrointestinal tract, fibre undergoes physical changes not usually included inin vitrodigestion studies even though they influence nutrient diffusion and might play a role in gut microbiota growth.

2019 ◽  
Vol 10 (8) ◽  
pp. 5070-5079 ◽  
Author(s):  
Zuman Dou ◽  
Chun Chen ◽  
Xiong Fu

This study aims to investigate the bioaccessibility, bioactivity and gut microbiota modulation effect of Moringa oleifera Lam. leaves after in vitro gastrointestinal digestion and colonic fermentation.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


2020 ◽  
Vol 11 (7) ◽  
pp. 6297-6307 ◽  
Author(s):  
Timme van der Lugt ◽  
Koen Venema ◽  
Stefan van Leeuwen ◽  
Misha F. Vrolijk ◽  
Antoon Opperhuizen ◽  
...  

In a sophisticated gastrointestinal model, dietary advanced glycation endproducts (dAGEs) in food products remain bound to proteins after digestion and concentrations increase.


Author(s):  
Wanyin Tao ◽  
Shu Zhu ◽  
Guorong Zhang ◽  
Xiaofang Wang ◽  
Meng Guo ◽  
...  

The current global COVID-19 pandemic is caused by beta coronavirus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which already infected over 10 million and caused 500 thousand deaths by June 2020. Overproduction of cytokines triggered by COVID-19 infection, known as "cytokine storm", is a highly risk factor associated with disease severity. However, how COVID-19 infection induce cytokine storm is still largely unknown. Accumulating in vitro and in vivo evidence suggests that gut is also susceptible to COVID19 infection: Human intestinal organoids, an in vitro model which mimic the specific cell type and spatial structure of the intestine, were susceptible to SARS-CoV2 infection; A significant fraction of patients reported gut symptoms; Viral RNA may persist for more than 30 days and infectious virus could be isolated in fecal samples. The gastrointestinal tract is the primary site of interaction between the host immune system with symbiotic and pathogenic microorganisms. The bacteria resident in our gastrointestinal tract, known as gut microbiota, is important to maintain the homeostasis of our immune system. While imbalance of gut microbiota, or dysbiosis, is associated with multiple inflammation diseases5. It's possible that SARS-CoV-2 infection may lead to alternation of gut microbiota thus worsen the host symptom. IL-18 is a proinflammatory cytokine produced multiple enteric cells, including intestinal epithelial cells (IECs), immune cells as well as enteric nervous system, and was shown to increase in the serum of COVID-19 patients. Immunoglobin A (IgA) is mainly produced in the mucosal surfaces, in humans 40-60mg kg-1 day-1 than all other immunoglobulin isotypes combined, and at least 80% of all plasma cells are located in the intestinal lamina propria. Recent study showed that SARS-CoV-2 specific IgA in the serum is positively correlate with the disease severity in COVID-19 patients11. Here we investigated the alterations of microbiota in COVID-19 patients, and its correlation with inflammatory factor IL-18 and SARS-CoV2 specific IgA.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 184
Author(s):  
Wenyang Tao ◽  
Chaoyang Wei ◽  
Shuyu Shen ◽  
Mengting Wang ◽  
Shiguo Chen ◽  
...  

Chinese bayberry leaf proanthocyanidins (BLPs) are Epigallocatechin gallate (EGCG) oligomers or polymers, which have a lot of health-promoting activity. The activity is closely related to their behavior during in vitro digestion, which remains unknown and hinders further investigations. To clarify the changes of BLPs during gastrointestinal digestion, further research is required. For in vitro digestion, including gastric-intestinal digestion, colon fermentation was applied. Caco-2 monolayer transportation was also applied to investigate the behavior of different BLPs with different degrees of polymerization. The trimers and the tetramers were significantly decreased during in vitro gastric-intestinal digestion resulting in a significant increase in the content of dimers. The dimers and trimers were the main compounds utilized by gut microbiota and they were assumed not to degrade through cleavage of the inflavan bond. The monomers and dimers were able to transport through the Caco-2 monolayer at a rate of 10.45% and 6.4%, respectively.


2006 ◽  
Vol 72 (4) ◽  
pp. 3042-3045 ◽  
Author(s):  
Francesca Valerio ◽  
Palmira De Bellis ◽  
Stella Lisa Lonigro ◽  
Lorenzo Morelli ◽  
Angelo Visconti ◽  
...  

ABSTRACT The ability of potentially probiotic strains of Lactobacillus plantarum and Lactobacillus paracasei to survive on artichokes for at least 90 days was shown. The anchorage of bacterial strains to artichokes improved their survival in simulated gastrointestinal digestion. L. paracasei IMPC2.1 was further used in an artichoke human feeding study involving four volunteers, and it was shown that the organism could be recovered from stools.


Sign in / Sign up

Export Citation Format

Share Document