scholarly journals Rational design of novel amphipathic antimicrobial peptides focused on the distribution of cationic amino acid residues

MedChemComm ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 896-900 ◽  
Author(s):  
Takashi Misawa ◽  
Chihiro Goto ◽  
Norihito Shibata ◽  
Motoharu Hirano ◽  
Yutaka Kikuchi ◽  
...  

Amphipathic helical peptideStripeshowed high antimicrobial activity, low hemolytic activity, and low human cell cytotoxicity.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 444
Author(s):  
Motoharu Hirano ◽  
Chihiro Saito ◽  
Hidetomo Yokoo ◽  
Chihiro Goto ◽  
Ryuji Kawano ◽  
...  

Magainin 2 (Mag2), which was isolated from the skin of the African clawed frog, is a representative antimicrobial peptide (AMP) that exerts antimicrobial activity via microbial membrane disruption. It has been reported that the helicity and amphipathicity of Mag2 play important roles in its antimicrobial activity. We investigated and recently reported that 17 amino acid residues of Mag2 are required for its antimicrobial activity, and accordingly developed antimicrobial foldamers containing α,α-disubstituted amino acid residues. In this study, we further designed and synthesized a set of Mag2 derivatives bearing the hydrocarbon stapling side chain for helix stabilization. The preferred secondary structures, antimicrobial activities, and cell-membrane disruption activities of the synthesized peptides were evaluated. Our analyses revealed that hydrocarbon stapling strongly stabilized the helical structure of the peptides and enhanced their antimicrobial activity. Moreover, peptide 2 stapling between the first and fifth position from the N-terminus showed higher antimicrobial activity than that of Mag2 against both gram-positive and gram-negative bacteria without exerting significant hemolytic activity. To investigate the modes of action of tested peptides 2 and 8 in antimicrobial and hemolytic activity, electrophysiological measurements were performed.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 627
Author(s):  
Yu Zai ◽  
Yuan Ying ◽  
Zhuming Ye ◽  
Mei Zhou ◽  
Chengbang Ma ◽  
...  

DMPC-10A (ALWKKLLKK-Cha-NH2) is a 10-mer peptide derivative from the N-terminal domain of Dermaseptin-PC which has shown broad-spectrum antimicrobial activity as well as a considerable hemolytic effect. In order to reduce hemolytic activity and improve stability to endogenous enzymes, a D-amino acid enantiomer (DMPC-10B) was designed by substituting all L-Lys and L-Leu with their respective D-form amino acid residues, while the Ala1 and Trp3 remained unchanged. The D-amino acid enantiomer exhibited similar antimicrobial potency to the parent peptide but exerted lower cytotoxicity and hemolytic activity. Meanwhile, DMPC-10B exhibited remarkable resistance to hydrolysis by trypsin and chymotrypsin. In addition to these advantages, DMPC-10B exhibited an outstanding antibacterial effect against Methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumoniae using the Galleria mellonella larva model and displayed synergistic activities with gentamicin against carbapenem-resistant K. pneumoniae strains. This indicates that DMPC-10B would be a promising alternative for treating antibiotic-resistant pathogens.


2016 ◽  
Vol 8 (18) ◽  
pp. 11366-11378 ◽  
Author(s):  
Hajar Maleki ◽  
Akhilesh Rai ◽  
Sandra Pinto ◽  
Marta Evangelista ◽  
Renato M.S. Cardoso ◽  
...  

Plants ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 74 ◽  
Author(s):  
Eugene Rogozhin ◽  
Dmitry Ryazantsev ◽  
Alexey Smirnov ◽  
Sergey Zavriev

Cereal-derived bioactive peptides with antimicrobial activity have been poorly explored compared to those from dicotyledonous plants. Furthermore, there are a few reports addressing the structural differences between antimicrobial peptides (AMPs) from cultivated and wild cereals, which may shed light on significant varieties in the range and level of their antimicrobial activity. We performed a primary structure analysis of some antimicrobial peptides from wild and cultivated cereals to find out the features that are associated with the much higher antimicrobial resistance characteristic of wild plants. In this review, we identified and analyzed the main parameters determining significant antifungal activity. They relate to a high variability level in the sequences of C-terminal fragments and a high content of hydrophobic amino acid residues in the biologically active defensins in wild cereals, in contrast to AMPs from cultivated forms that usually exhibit weak, if any, activity. We analyzed the similarity of various physicochemical parameters between thionins and defensins. The presence of a high divergence on a fixed part of any polypeptide that is close to defensins could be a determining factor. For all of the currently known hevein-like peptides of cereals, we can say that the determining factor in this regard is the structure of the chitin-binding domain, and in particular, amino acid residues that are not directly involved in intermolecular interaction with chitin. The analysis of amino acid sequences of alpha-hairpinins (hairpin-like peptides) demonstrated much higher antifungal activity and more specificity of the peptides from wild cereals compared with those from wheat and corn, which may be associated with the presence of a mini cluster of positively charged amino acid residues. In addition, at least one hydrophobic residue may be responsible for binding to the components of fungal cell membranes.


2020 ◽  
Author(s):  
Kangle Niu ◽  
Zhengyao Liu ◽  
Yuhui Feng ◽  
Tianlong Gao ◽  
Zhenzhen Wang ◽  
...  

<p>Oligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis, especially rare disaccharides, is reverse hydrolysis by <i>β</i>-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants<i> Tr</i>Cel1b<sup>I177S</sup>, <i>Tr</i>Cel1b<sup>I177S/I174S</sup>, and <i>Tr</i>Cel1b<sup>I177S/I174S/W173H</sup>, and one negative variant <i>Tr</i>Cel1b<sup>N240I</sup> were designed according to the <u>H</u>ydropathy <u>I</u>ndex <u>F</u>or <u>E</u>nzyme <u>A</u>ctivity (HIFEA) strategy. The reverse hydrolysis with <i>Tr</i>Cel1b<sup>I177S/I174S/W173H </sup>was accelerated and then the maximum total production (<a>195.8 mg/ml/mg enzyme</a>) of the synthesized disaccharides was increased 3.5-fold compared to that of wildtype. On the contrary, <a><i>Tr</i>Cel1b</a><sup>N240I</sup> lost reverse hydrolysis activity. The results demonstrate that<a> </a><a>the average hydropathy index</a> of <a>the key amino acid residues </a>in the catalytic site of<i> Tr</i>Cel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of <i>β</i>-glucosidases used for the synthesis of oligosaccharides.</p>


1993 ◽  
Vol 292 (1) ◽  
pp. 69-74 ◽  
Author(s):  
W Asmara ◽  
U Murdiyatmo ◽  
A J Baines ◽  
A T Bull ◽  
D J Hardman

The chemical modification of L-2-haloacid halidohydrolase IVa (Hdl IVa), originally identified in Pseudomonas cepacia MBA4, produced as a recombinant protein in Escherichia coli DH5 alpha, led to the identification of histidine and arginine as amino acid residues likely to play a part in the catalytic mechanism of the enzyme. These results, together with DNA sequence and analyses [Murdiyatmo, Asmara, Baines, Bull and Hardman (1992) Biochem. J. 284, 87-93] provided the basis for the rational design of a series of random- and site-directed-mutagenesis experiments of the Hdl IVa structural gene (hdl IVa). Subsequent apparent kinetic analyses of purified mutant enzymes identified His-20 and Arg-42 as the key residues in the activity of this halidohydrolase. It is also proposed that Asp-18 is implicated in the functioning of the enzyme, possibly by positioning the correct tautomer of His-20 for catalysis in the enzyme-substrate complex and stabilizing the protonated form of His-20 in the transition-state complex. Comparison of conserved amino acid sequences between the Hdl IVa and other halidohydrolases suggests that L-2-haloacid halidohydrolases contain conserved amino acid sequences that are not found in halidohydrolases active towards both D- and L-2-monochloropropionate.


2020 ◽  
Author(s):  
Kangle Niu ◽  
Zhengyao Liu ◽  
Yuhui Feng ◽  
Tianlong Gao ◽  
Zhenzhen Wang ◽  
...  

Abstract Oligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis is reverse hydrolysis by β-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants TrCel1bI177S, TrCel1bI177S/I174S, and TrCel1bI177S/I174S/W173H, and one negative variant TrCel1bN240I were designed according to the Hydropathy Index For Enzyme Activity (HIFEA) strategy. The reverse hydrolysis with TrCel1bI177S/I174S/W173H was accelerated and then the maximum total production (195.8 mg/ml/mg enzyme) of the synthesized disaccharides was increased 3.5-fold compared to that of wildtype. On the contrary, TrCel1bN240I lost reverse hydrolysis activity. The results demonstrate that the average hydropathy index of the key amino acid residues in the catalytic site of TrCel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of β-glucosidases used for the synthesis of oligosaccharides.


Sign in / Sign up

Export Citation Format

Share Document