Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses

Nanoscale ◽  
2020 ◽  
Vol 12 (15) ◽  
pp. 8216-8229
Author(s):  
Hong-Ki Kim ◽  
Soo In Kim ◽  
Seongjun Kim ◽  
Nam-Suk Lee ◽  
Hoon-Kyu Shin ◽  
...  

In the defective SiC epitaxial layer, the work function variation was observed by Kelvin probe force microscopy (KPFM), and the work function difference came from the variation of polytype and the disordered surface.

2020 ◽  
pp. 106060
Author(s):  
Mads Nibe Larsen ◽  
Mads Svanborg Peters ◽  
Rodrigo Lemos-Silva ◽  
Demetrio A. Da Silva Filho ◽  
Bjarke Jørgensen ◽  
...  

2003 ◽  
Vol 529 (1-2) ◽  
pp. L245-L250 ◽  
Author(s):  
Akira Sasahara ◽  
Hiroshi Uetsuka ◽  
Hiroshi Onishi

1999 ◽  
Vol 568 ◽  
Author(s):  
Hernan Rueda ◽  
James Slinkman ◽  
Dureseti Chidambarrao ◽  
Leon Moszkowicz ◽  
Phil Kaszuba ◽  
...  

ABSTRACTmethod for characterizing the mechanical stress induced in silicon technology is described. Analysis by scanning Kelvin probe force microscopy (SKPM) coupled with finite-element (FE) mechanical strain simulations is performed. The SKPM technique detects variations in the semiconductor work function due to strain influences on the band gap. This technique is then used to analyze the strain induced by shallow trench isolation processes for electrical isolation. The SKPM measurements agree with the FE simulations qualitatively.


2014 ◽  
Vol 2 (19) ◽  
pp. 3805-3811 ◽  
Author(s):  
Feng Yan ◽  
Frank Schoofs ◽  
Jian Shi ◽  
Sieu D. Ha ◽  
R. Jaramillo ◽  
...  

We have investigated the evolution of work function in epitaxial correlated perovskite SmNiO3 (SNO) thin films spanning the metal–insulator transition (MIT) by Kelvin probe force microscopy (KPFM).


2013 ◽  
Vol 4 ◽  
pp. 418-428 ◽  
Author(s):  
Alex Henning ◽  
Gino Günzburger ◽  
Res Jöhr ◽  
Yossi Rosenwaks ◽  
Biljana Bozic-Weber ◽  
...  

Dye-sensitized solar cells (DSCs) provide a promising third-generation photovoltaic concept based on the spectral sensitization of a wide-bandgap metal oxide. Although the nanocrystalline TiO2 photoelectrode of a DSC consists of sintered nanoparticles, there are few studies on the nanoscale properties. We focus on the microscopic work function and surface photovoltage (SPV) determination of TiO2 photoelectrodes using Kelvin probe force microscopy in combination with a tunable illumination system. A comparison of the surface potentials for TiO2 photoelectrodes sensitized with two different dyes, i.e., the standard dye N719 and a copper(I) bis(imine) complex, reveals an inverse orientation of the surface dipole. A higher surface potential was determined for an N719 photoelectrode. The surface potential increase due to the surface dipole correlates with a higher DSC performance. Concluding from this, microscopic surface potential variations, attributed to the complex nanostructure of the photoelectrode, influence the DSC performance. For both bare and sensitized TiO2 photoelectrodes, the measurements reveal microscopic inhomogeneities of more than 100 mV in the work function and show recombination time differences at different locations. The bandgap of 3.2 eV, determined by SPV spectroscopy, remained constant throughout the TiO2 layer. The effect of the built-in potential on the DSC performance at the TiO2/SnO2:F interface, investigated on a nanometer scale by KPFM measurements under visible light illumination, has not been resolved so far.


Sign in / Sign up

Export Citation Format

Share Document