scholarly journals A dormant BODIPY-acrolein singlet oxygen photosensitizer intracellularly activated upon adduct formation with cysteine residues

2019 ◽  
Vol 18 (8) ◽  
pp. 2003-2011 ◽  
Author(s):  
Richard Lincoln ◽  
Antonius T. M. Van Kessel ◽  
Wenzhou Zhang ◽  
Gonzalo Cosa

BromoAcroB, a brominated BODIPY with an acrolein warhead, is a dormant photosensitizer activated upon cysteine addition; it induces light-dependent cell death upon thiol-adduct formation, a tool for cell metabolic studies.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Matthew D. Lemke ◽  
Karen E. Fisher ◽  
Marta A. Kozlowska ◽  
David W. Tano ◽  
Jesse D. Woodson

Abstract Background Chloroplasts respond to stress and changes in the environment by producing reactive oxygen species (ROS) that have specific signaling abilities. The ROS singlet oxygen (1O2) is unique in that it can signal to initiate cellular degradation including the selective degradation of damaged chloroplasts. This chloroplast quality control pathway can be monitored in the Arabidopsisthaliana mutant plastid ferrochelatase two (fc2) that conditionally accumulates chloroplast 1O2 under diurnal light cycling conditions leading to rapid chloroplast degradation and eventual cell death. The cellular machinery involved in such degradation, however, remains unknown. Recently, it was demonstrated that whole damaged chloroplasts can be transported to the central vacuole via a process requiring autophagosomes and core components of the autophagy machinery. The relationship between this process, referred to as chlorophagy, and the degradation of 1O2-stressed chloroplasts and cells has remained unexplored. Results To further understand 1O2-induced cellular degradation and determine what role autophagy may play, the expression of autophagy-related genes was monitored in 1O2-stressed fc2 seedlings and found to be induced. Although autophagosomes were present in fc2 cells, they did not associate with chloroplasts during 1O2 stress. Mutations affecting the core autophagy machinery (atg5, atg7, and atg10) were unable to suppress 1O2-induced cell death or chloroplast protrusion into the central vacuole, suggesting autophagosome formation is dispensable for such 1O2–mediated cellular degradation. However, both atg5 and atg7 led to specific defects in chloroplast ultrastructure and photosynthetic efficiencies, suggesting core autophagy machinery is involved in protecting chloroplasts from photo-oxidative damage. Finally, genes predicted to be involved in microautophagy were shown to be induced in stressed fc2 seedlings, indicating a possible role for an alternate form of autophagy in the dismantling of 1O2-damaged chloroplasts. Conclusions Our results support the hypothesis that 1O2-dependent cell death is independent from autophagosome formation, canonical autophagy, and chlorophagy. Furthermore, autophagosome-independent microautophagy may be involved in degrading 1O2-damaged chloroplasts. At the same time, canonical autophagy may still play a role in protecting chloroplasts from 1O2-induced photo-oxidative stress. Together, this suggests chloroplast function and degradation is a complex process utilizing multiple autophagy and degradation machineries, possibly depending on the type of stress or damage incurred.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 341-350
Author(s):  
Jean T Greenberg ◽  
F Paul Silverman ◽  
Hua Liang

Abstract Salicylic acid (SA) is required for resistance to many diseases in higher plants. SA-dependent cell death and defense-related responses have been correlated with disease resistance. The accelerated cell death 5 mutant of Arabidopsis provides additional genetic evidence that SA regulates cell death and defense-related responses. However, in acd5, these events are uncoupled from disease resistance. acd5 plants are more susceptible to Pseudomonas syringae early in development and show spontaneous SA accumulation, cell death, and defense-related markers later in development. In acd5 plants, cell death and defense-related responses are SA dependent but they do not confer disease resistance. Double mutants with acd5 and nonexpressor of PR1, in which SA signaling is partially blocked, show greatly attenuated cell death, indicating a role for NPR1 in controlling cell death. The hormone ethylene potentiates the effects of SA and is important for disease symptom development in Arabidopsis. Double mutants of acd5 and ethylene insensitive 2, in which ethylene signaling is blocked, show decreased cell death, supporting a role for ethylene in cell death control. We propose that acd5 plants mimic P. syringae-infected wild-type plants and that both SA and ethylene are normally involved in regulating cell death during some susceptible pathogen infections.


2007 ◽  
Vol 9 (5) ◽  
pp. 550-555 ◽  
Author(s):  
Christopher P. Baines ◽  
Robert A. Kaiser ◽  
Tatiana Sheiko ◽  
William J. Craigen ◽  
Jeffery D. Molkentin

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Rasmus Gustafsson

Human herpesvirus 6A (HHV-6A) is a common virus that has important immunomodulatory effects. Dendritic cells (DC) are key players in innate and adaptive immunity and are implicated in the pathogenesis of many human diseases, including infections. (1) Background: Previous studies have demonstrated suppressive effects of HHV-6A on key DC functions. (2) Methods: human monocyte derived dendritic cells were inoculated with HHV-6A and viral replication, cell viability, and release of high mobility group box 1 (HMGB1) protein from DC and of the cytokines IL-2, IL-4, IL-6, IL-10, TNF and IFN-γ after co-culture with allogenic CD4+ T cells were assessed. (3) Results: Nonproductive infection of HHV-6A in DC leads to titer-dependent cell death and the release of HMGB1 protein, and a Th2 polarization. (4) Conclusion: These immune responses aimed to clear the infection may also imply risks for inflammatory pathologies associated with HHV-6A such as multiple sclerosis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5548
Author(s):  
Yan Li ◽  
Tianyu Tang ◽  
Haejune Lee ◽  
Kiwon Song

Cold atmospheric pressure plasma (CAP) and plasma-activated medium (PAM) induce cell death in diverse cancer cells and may function as powerful anti-cancer agents. The main components responsible for the selective anti-cancer effects of CAP and PAM remain elusive. CAP or PAM induces selective cell death in hepatocellular carcinoma cell lines Hep3B and Huh7 containing populations with cancer stem cell markers. Here, we investigated the major component(s) of CAP and PAM for mediating the selective anti-proliferative effect on Hep3B and Huh7 cells. The anti-proliferative effect of CAP was mediated through the medium; however, the reactive oxygen species scavenger N-acetyl cysteine did not suppress PAM-induced cell death. Neither high concentrations of nitrite or nitrite/nitrate nor a low concentration of H2O2 present in the PAM containing sodium pyruvate affected the viability of Hep3B and Huh7 cells. Inhibitors of singlet oxygen, superoxide anions, and nitric oxide retained the capacity of PAM to induce anti-cancer effects. The anti-cancer effect was largely blocked in the PAM prepared by placing an aluminum metal mesh, but not a dielectric PVC mesh, between the plasma source and the medium. Hence, singlet oxygen, hydrogen peroxide, nitric oxide, and nitrite/nitrate are not the main factors responsible for PAM-mediated selective death in Hep3B and Huh7 cells. Other factors, such as charged particles including various ions in CAP and PAM, may induce selective anti-cancer effects in certain cancer cells.


Sign in / Sign up

Export Citation Format

Share Document