Carbon impurity-free, novel Mn,N co-doped porous Mo2C nanorods for an efficient and stable hydrogen evolution reaction

2019 ◽  
Vol 6 (9) ◽  
pp. 2464-2471 ◽  
Author(s):  
Yajun Zhou ◽  
Jieyu Xu ◽  
Cheng Lian ◽  
Lin Ge ◽  
Lingxia Zhang ◽  
...  

Carbon impurity-free, novel Mn,N co-doped porous Mo2C nanorods reduce the hydrogen adsorption energy, functioning as efficient HER electrocatalysts.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Qian Zhang ◽  
Shuihua Tang ◽  
Lieha Shen ◽  
Weixiang Yang ◽  
Zhen Tang ◽  
...  

Developing cost-effective and high-performance electrocatalysts for hydrogen evolution reaction (HER) are imperative thanks to rapid increase of fuel-cell driven vehicles. Tungsten (W) possesses advantages of optimized hydrogen adsorption energy and...


2021 ◽  
Author(s):  
Zhenbin Wang ◽  
Michael Tang ◽  
Ang Cao ◽  
Karen Chan ◽  
Jens Kehlet Nørskov

<p>Understanding the hydrogen evolution reaction (HER) behaviors over 2D transition metal dichalcogenides (2D-TMDs) is critical for the development of non-precious HER electrocatalysts with better activity. In this work, by combining density functional theory calculations with microkinetic modelling, we thoroughly investigated the HER mechanism on 2D-TMDs. We find there is an important dependence of simulated cell size on the calculated hydrogen adsorption energy and the activation barrier for MoS<sub>2</sub>. Distinct from previous “H migration” mechanisms proposed for the Heyrovsky reaction − the rate-determining step for MoS<sub>2</sub>, we propose the Mo site only serves as the stabilized transition state rather than H adsorption. In comparison to transition metal electrocatalysts, we find that the activation barrier of the Heyrovsky reaction on 2D-TMDs scales with the hydrogen adsorption energy exactly as for transition metals except that all activation energies are displaced upwards by <i>ca.</i> 0.4 eV. This higher Heyrovsky activation barrier is responsible for the substantially lower activity of 2D-TMDs. We further show that this higher activation barrier stems from the more positively charged adsorbed hydrogen on the chalcogenides interacting repulsively with the incoming proton. Based on these insights, we discuss potential strategies for the design of non-precious HER catalysts with activity comparable to Pt.</p>


2021 ◽  
Author(s):  
Zhenbin Wang ◽  
Michael Tang ◽  
Ang Cao ◽  
Karen Chan ◽  
Jens Kehlet Nørskov

<p>Understanding the hydrogen evolution reaction (HER) behaviors over 2D transition metal dichalcogenides (2D-TMDs) is critical for the development of non-precious HER electrocatalysts with better activity. In this work, by combining density functional theory calculations with microkinetic modelling, we thoroughly investigated the HER mechanism on 2D-TMDs. We find there is an important dependence of simulated cell size on the calculated hydrogen adsorption energy and the activation barrier for MoS<sub>2</sub>. Distinct from previous “H migration” mechanisms proposed for the Heyrovsky reaction − the rate-determining step for MoS<sub>2</sub>, we propose the Mo site only serves as the stabilized transition state rather than H adsorption. In comparison to transition metal electrocatalysts, we find that the activation barrier of the Heyrovsky reaction on 2D-TMDs scales with the hydrogen adsorption energy exactly as for transition metals except that all activation energies are displaced upwards by <i>ca.</i> 0.4 eV. This higher Heyrovsky activation barrier is responsible for the substantially lower activity of 2D-TMDs. We further show that this higher activation barrier stems from the more positively charged adsorbed hydrogen on the chalcogenides interacting repulsively with the incoming proton. Based on these insights, we discuss potential strategies for the design of non-precious HER catalysts with activity comparable to Pt.</p>


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14063-14070
Author(s):  
M. Morishita ◽  
A. Nozaki ◽  
H. Yamamoto ◽  
N. Fukumuro ◽  
M. Mori ◽  
...  

The catalytic activity of the Co-doped WC is 30% higher than that of Pt nanoparticles for the hydrogen evolution reaction arising from an internal magnetic field.


Author(s):  
Zongyun Mu ◽  
Ting Guo ◽  
Hao Fei ◽  
Dingsheng Xu ◽  
Yaoqing Mao ◽  
...  

Molybdenum carbide (Mo2C) has received great attention as a promising non-noble metal electrocatalyst for hydrogen evolution reaction (HER). The exposure of more catalytic sites and optimal Mo-H bonding strength via...


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 307
Author(s):  
Russell W. Cross ◽  
Nelson Y. Dzade

Nickel phosphide (Ni2P) is a promising material for the electrocatalytic generation of hydrogen from water. Here, we present a chemical picture of the fundamental mechanism of Volmer–Tafel steps in hydrogen evolution reaction (HER) activity under alkaline conditions at the (0001) and (10 1 ¯ 0) surfaces of Ni2P using dispersion-corrected density functional theory calculations. Two terminations of each surface (Ni3P2- and Ni3P-terminated (0001); and Ni2P- and NiP-terminated (10 1 ¯ 0)), which have been shown to coexist in Ni2P samples depending on the experimental conditions, were studied. Water adsorption on the different terminations of the Ni2P (0001) and (10 1 ¯ 0) surfaces is shown to be exothermic (binding energy in the range of 0.33−0.68 eV) and characterized by negligible charge transfer to/from the catalyst surface (0.01−0.04 e−). High activation energy barriers (0.86−1.53 eV) were predicted for the dissociation of water on each termination of the Ni2P (0001) and (10 1 ¯ 0) surfaces, indicating sluggish kinetics for the initial Volmer step in the hydrogen evolution reaction over a Ni2P catalyst. Based on the predicted Gibbs free energy of hydrogen adsorption (ΔGH*) at different surface sites, we found that the presence of Ni3-hollow sites on the (0001) surface and bridge Ni-Ni sites on the (10 1 ¯ 0) surface bind the H atom too strongly. To achieve facile kinetics for both the Volmer and Heyrovsky–Tafel steps, modification of the surface structure and tuning of the electronic properties through transition metal doping is recommended as an important strategy.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1460
Author(s):  
Sajjad Hussain ◽  
Jinwoong Chae ◽  
Kamran Akbar ◽  
Dhanasekaran Vikraman ◽  
Linh Truong ◽  
...  

Much research has been done on reliable and low-cost electrocatalysts for hydrogen generation by water splitting. In this study, we synthesized thin films of silver selenide (Ag2Se) using a simple thermal evaporation route and demonstrated their electrocatalytic hydrogen evolution reaction (HER) activity. The Ag2Se catalysts show improved electrochemical surface area and good HER electrocatalytic behavior (367 mV overpotential @ 10 mA·cm−2, exchange current density: ~1.02 × 10−3 mA·cm−2, and Tafel slope: 53 mV·dec−1) in an acidic medium). The reliability was checked in 0.5 M sulfuric acid over 20 h. Our first-principles calculations show the optimal energy of hydrogen adsorption, which is consistent with experimental results. The works could be further extended for finding a new catalyst by associating the selenide, sulfide or telluride-based materials without complex catalyst synthesis procedures.


Sign in / Sign up

Export Citation Format

Share Document