scholarly journals Three-dimensional “skin-framework” hybrid network as electroactive material platform for high-performance solid-state asymmetric supercapacitor

RSC Advances ◽  
2019 ◽  
Vol 9 (23) ◽  
pp. 12877-12885
Author(s):  
Liaoyuan Xia ◽  
Shaoheng Hu ◽  
Xueqin Zhang ◽  
Le Huang ◽  
Yu Liao ◽  
...  

3D “skin-framework” architecture of the MCN with large interfacial contact area and high electrical conductivity enable it to serve as a powerful electroactive platform for high-performance solid-state MnO2-MCN//AC-MCN ASC device.

2015 ◽  
Vol 3 (31) ◽  
pp. 16150-16161 ◽  
Author(s):  
Dezhi Kong ◽  
Chuanwei Cheng ◽  
Ye Wang ◽  
Jen It Wong ◽  
Yaping Yang ◽  
...  

A novel asymmetric supercapacitor composed of Co3O4@C@Ni3S2 NNAs as the positive electrode and activated carbon (AC) as the negative electrode can deliver a high energy density and excellent long cycle stability.


RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 70292-70302 ◽  
Author(s):  
Syed Khalid ◽  
Chuanbao Cao ◽  
Lin Wang ◽  
Youqi Zhu ◽  
Yu Wu

The volumetric energy density and power density of a novel solid state device (NiCo2O4//MnO2) are much higher than most reported devices.


2017 ◽  
Vol 41 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Hamid Heydari ◽  
Mohammad B. Gholivand

3D porous PANI hydrogel and a gel electrolyte were used to fabricate a high performance, all-solid-state, flexible asymmetric supercapacitor with an energy density of up to 6.16 mW h cm−3.


Author(s):  
Jiawei Wu ◽  
Jing Chen ◽  
Xiaodong Wang ◽  
An'an Zhou ◽  
Zhenglong Yang

For the higher safety and energy density, solid-state electrolyte with better mechanical strength, thermal and electrochemical stability is a perfect choice. To improve the performance of PEO, usage of low-cost...


Author(s):  
Shi Wang ◽  
Xiang-Chun Li ◽  
Tao Cheng ◽  
Yuan-Yuan Liu ◽  
Qiange Li ◽  
...  

Covalent organic frameworks (COFs) with well-tailored channels have the potential to efficiently transport ions yet remain to be explored. The ion transport capability is generally limited due to the lack...


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jing Ning ◽  
Maoyang Xia ◽  
Dong Wang ◽  
Xin Feng ◽  
Hong Zhou ◽  
...  

Abstract Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like Ni3Si2/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni–Si particles, considerably catalyzing the growth of Ni–Si nanocrystals. By controlling the carbon source content, a Ni3Si2 single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g−1 (1193.28 F g−1) at 1 A g−1; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg−1 at 750 W kg−1, which can be attributed to the free-standing Ni3Si2/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.


2020 ◽  
Vol 20 (8) ◽  
pp. 5175-5181 ◽  
Author(s):  
Ruiqing Li ◽  
Chenyang Xu ◽  
Xiangfen Jiang ◽  
Yoshio Bando ◽  
Xuebin Wang

Developing high-performance nonprecious electrocatalysts for oxygen evolution reaction (OER) is of great importance, but it remains a challenge. In this paper, we synthesize a porous monolithic catalytic electrode, which is transition metal nitride, Ni3FeN, constructed on a 3D network-like support of the strutted graphene foam (Ni3FeN/SG). The obtained Ni3FeN/SG electrode shows the excellent catalytic activity and the durability for OER in alkaline solution, owing to iron incorporation, high electrical conductivity and 3D network-like structure of strutted graphene. It requires small overpotential (226 mV) to actuate 10 mA cm−2, superior to most recently developed catalysts and commercial RuO2. The fabrication strategy provides a substantial way to expand 3D porous monolithic electrodes for various electrocatalytic applications.


2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


Sign in / Sign up

Export Citation Format

Share Document