scholarly journals Impact of some pyrrolidinium ionic liquids on copper dissolution behavior in acidic environment: experimental, morphological and theoretical insights

RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20760-20777 ◽  
Author(s):  
Emad E. El-Katori ◽  
Ashraf S. Abousalem

The inhibitive and adsorption activity of some pyrrolidinium ionic liquids (ILs) for the dissolution of copper in 1 M HNO3 solution was tested using chemical methods such as weight loss and electrochemical techniques.

2019 ◽  
Author(s):  
Chem Int

The anti-corrosive properties of sulphadoxine + pyrimethamine (S+P) on the corrosion of pipeline steel in acidic environment were investigated using electrochemical techniques. The results obtained showed an excellent inhibition efficiency which increased with increase in inhibitor concentration. The corrosion inhibition efficiency increased up to 99.04 % at 0.01M S+P and decreased with rise in temperature down to 85.93 % at 333 K and 0.01 M S+P, suggesting a physiosorptive mechanism of adsorption. Also the adsorption data was fitted into Langmuir and Temkin adsorption isotherms, while the inhibitive action was shown to proceed by mixed inhibition mode.


CORROSION ◽  
1970 ◽  
Vol 26 (5) ◽  
pp. 189-199 ◽  
Author(s):  
W. D. FRANCE

Abstract The rate and type of corrosion exhibited by mild steel in the annealed, stressed, and plastically deformed state have been investigated. Precise electrochemical techniques provided potential and polarization data to supplement the results of chemical corrosion tests. Experiments were conducted in 0.6M NH4NO3 solutions in which steel exhibits active-passive dissolution behavior as well as localized corrosion. At active potentials, the anodic polarization curves for annealed and deformed specimens were nearly identical, with only slight increases in current densities for the deformed steel. Results at passive potentials demonstrated that increased plastic deformation can markedly decrease the passive potential range, the stability of passivity, and the ability to passivate. At certain passive potentials, the deformed steel exhibited current densities that were 400 times greater than those for annealed steel. The effects of pH, chloride ions, and crevices on the corrosion of deformed steel were examined in detail. The differences between the dissolution behavior of annealed and deformed steel were most distinctive in the approximate pH range of 3 to 6. This work is relevant to the understanding of the initiation of localized corrosion and to anodic protection.


2018 ◽  
Vol 47 (37) ◽  
pp. 12914-12932 ◽  
Author(s):  
Isabel del Hierro ◽  
Santiago Gómez-Ruiz ◽  
Yolanda Pérez ◽  
Paula Cruz ◽  
Sanjiv Prashar ◽  
...  

The effect of the functionalization of SBA-15 with titanocene derivatives and ionic liquids in biological processes has been tested by electrochemical techniques.


2021 ◽  
Author(s):  
Jian Sun ◽  
Xinyue Wang ◽  
huajing Gao ◽  
Feng Chen ◽  
Xing-Bao Wang ◽  
...  

By adding different proportions of N-buthylimidazole and carboxyethylthiosuccinic acid (CETSA), three hybrid systems of ionic liquids were synthesized and named ILHS1, ILHS2 and ILHS3. By using weight loss method, electrochemical...


Holzforschung ◽  
2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Michael Schrems ◽  
Agnieszka Brandt ◽  
Tom Welton ◽  
Falk Liebner ◽  
Thomas Rosenau ◽  
...  

Abstract The present study provides insight into the dissolution behavior of renewable materials in ionic liquids. Beech, spruce and rye straw were dissolved in 1-ethyl-3-methylimidazolium acetate as the ionic liquid of choice, which is currently one of the most frequently used cation-anion combinations among ionic liquids for biomaterial processing. The dissolution was followed by selective precipitation of cellulose, hemicelluloses, and lignin. The obtained lignin was analyzed with Curie-point pyrolysis gas chromatography/mass spectrometry (Cu-Py-GC/MS) and the separated cellulose/hemicellulose fractions with gel permeation chromatography (GPC). Time dependence of the dissolution process was studied on rye straw, eucalyptus kraft pulp and beech sulfite pulp. The results show a changing dissolution profile over time, which is due to progressing degradation of the cellulose in the ionic liquid.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
G. Salinas ◽  
J. G. Gonzalez-Rodriguez ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo ◽  
M. A. Espinoza-Medina

The hot corrosion behavior of Fe40Al intermetallic alloyed with Ag, Cu, Li, and Ni (1–5 at.%) in NaCl-KCl (1 : 1 M) at 670°C, typical of waste gasification environments, has been evaluated by using polarization curves and weight loss techniques and compared with a 304-type stainless steel. Both gravimetric and electrochemical techniques showed that all different Fe40Al-base alloys have a much higher corrosion resistance than that for stainless steel. Among the different Fe40Al-based alloys, the corrosion rate was very similar among each other, but it was evident that the addition of Li decreased their corrosion rate whereas all the other elements increased it. Results have been explained in terms of the formation and stability of an external, protective Al2O3layer.


2013 ◽  
Vol 634-638 ◽  
pp. 651-654
Author(s):  
Zi Chong Zhuang ◽  
Bao Hua Huang ◽  
Jun Liu ◽  
Yu Jing Lu ◽  
Zhan Chang Pan ◽  
...  

A new ionic liquid, N-octyl-2-pyrrolidonium chloride (NOPC), were synthesized and evaluated as inhibitors for mild steel (Q235) corrosion in 1 mol/L HCl. The adsorption behavior and corrosion inhibition mechanism of NOPC for mild steel in HCl solution were investigated by using weight loss measurements, electrochemical techniques, and SEM. The inhibition efficiency increases with the increasing concentration of NOPC in 1 mol/L HCl and decreases as the temperature increases. The results indicate that NOPC is able to function as a mixed type inhibitor.


Sign in / Sign up

Export Citation Format

Share Document