scholarly journals The preparation of a modified PVDF hollow fiber membrane by coating with multiwalled carbon nanotubes for high antifouling performance

RSC Advances ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 1848-1857 ◽  
Author(s):  
MengJing Cao ◽  
Yan Zhang ◽  
BoKang Zhang ◽  
ZiQi Liu ◽  
XiangShan Ma ◽  
...  

Backwashable CNT mats generated on the outer surface of a HF-PVDF membrane showed high antifouling performance.

2021 ◽  
Vol 578 (1) ◽  
pp. 169-178
Author(s):  
Chuan-Bao Ma ◽  
Xue-Xue Han ◽  
Shu-jing Yang ◽  
Hai-Lin Cong ◽  
You-Qing Shen ◽  
...  

2020 ◽  
pp. 91-102
Author(s):  
Ehsan Kianfar

Poly (vinylidene fluoride) (PVDF) and poly-sulfone (PSF) polymer solutions were made at a concentration of 18% by weight of the polymer as a non-soluble additive of polymer solution in 1-methyl-2-pyrrolidone (NMP) solvent. PVDF and PSF hollow fiber membranes were fabricated via the wet phase-inversion process. Fabricated membranes were characterized in terms of gas permeability, wetting resistance, water contact angle and overall porosity. In order to study the structure of the membranes made, the scanning electron microscopy images of the model (TM3000, HITACHI, Japan) were used. The morphology study indicates that the PSF membrane shows an open cross-section structure with smaller pore sizes. However, the PVDF membrane illustrates a thick sponge-like structure. The fabricated PVDF membrane shows higher wetting resistance, surface porosity, water contact angle, and N2 permeability. The performance of the produced membranes was examined for the Absorption of carbon dioxide in a gas-liquid contactor membrane through the solution of mono-ethanolamine (MEA). The results show that CO2 absorption flux of the PVDF hollow fiber membrane is higher than PSF hollow fiber membrane. The maximum CO2 absorption flux of 8.10 × 10-3 (mole/m2 s) at the liquid phase flow rate of 300 ml/min for PVDF hollow fiber membrane was achieved and also the maximum CO2 absorption flux of 6.50 × 10-3 (mole/m2 s) at the liquid phase flow rate of 300 ml/min for PSF hollow fiber membrane was obtained. It can be concluded that a porous hydrophobic hollow fiber membrane with high surface porosity and high gas permeability can be a productive alternative for CO2 absorption through gas-liquid membrane contactors.


2013 ◽  
Vol 795 ◽  
pp. 137-140 ◽  
Author(s):  
Kok Chung Chong ◽  
Soon Onn Lai ◽  
K.M. Lee ◽  
Woei Jye Lau ◽  
B.S. Ooi

Membrane distillation (MD) is one of the novel separation methods used in water and wastewater treatment processes. MD is a thermal driven process which has the potential to be integrated with renewable energy source and can be operated at very low pressure. Polyvinylidene fluoride (PVDF) is a hydrophobic polymeric material which is commonly used to prepare MD membrane. In this study, surface modifying macromolecule (SMM) was added as additive into PVDF dope solution and then the hollow fiber membrane was prepared using phase inversion process. The membrane was characterized with respect to morphology and permeates flux at different temperatures. The results revealed that the PVDF membrane blended with SMM exhibited higher permeate flux than PVDF neat membrane did, mainly due to the better pore size distribution and thinner skin layer. This finding indicated the role of SMM in modifying the properties of PVDF membrane for MD process.


Sign in / Sign up

Export Citation Format

Share Document