Self-limited conversion of MoO2 into ultramicro MoS2 nanosheets on graphene/CNTs matrix for hydrogen evolution with excellent stability

2020 ◽  
Vol 4 (6) ◽  
pp. 2869-2874 ◽  
Author(s):  
Jingyang Tian ◽  
Jiaxin Li ◽  
Anlin Feng ◽  
Xinran Han ◽  
Yuancai Lv ◽  
...  

Ultramicro MoS2 nanosheets with abundant active sites were uniformly dispersed in rGO, which can be effectively separated by CNTs.

2017 ◽  
Vol 5 (15) ◽  
pp. 6981-6991 ◽  
Author(s):  
D. Amaranatha Reddy ◽  
Hanbit Park ◽  
Sangyeob Hong ◽  
D. Praveen Kumar ◽  
Tae Kyu Kim

This work demonstrates a simple and effective approach using hydrazine to modulate the active sites and electrical conductivity of MoS2 with the aid of ultrasonication.


2015 ◽  
Vol 51 (10) ◽  
pp. 1893-1896 ◽  
Author(s):  
Z. H. Deng ◽  
L. Li ◽  
W. Ding ◽  
K. Xiong ◽  
Z. D. Wei

The S atoms bind to active sites of RGO for the nucleation of MoS2 and its subsequent growth perpendicular to RGO.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1465
Author(s):  
Na Liu ◽  
Jeonghun Kim ◽  
Jeonghyeon Oh ◽  
Quang Trung Nguyen ◽  
Bibhuti Bhusan Sahu ◽  
...  

Molybdenum disulfide (MoS2) has attracted considerable attention as a promising electrocatalyst for the hydrogen evolution reaction (HER). However, the catalytic HER performance of MoS2 is significantly limited by the few active sites and low electrical conductivity. In this study, the growth of multiorientated polycrystalline MoS2 using plasma-enhanced chemical vapor deposition (PECVD) for the HER is achieved. The MoS2 is synthesized by sulfurizing a sputtered pillar-shaped Mo film. The relatively low growth temperature during the PECVD process results in multiorientated MoS2 with an expanded interlayer spacing of ~0.75 nm, which provides abundant active sites, a reduced Gibbs free energy of H adsorption, and enhanced intralayer conductivity. In HER applications, the PECVD-grown MoS2 exhibits an overpotential value of 0.45 V, a Tafel slope of 76 mV dec−1, and excellent stability in strong acidic media for 10 h. The high HER performance achieved in this study indicates that two-dimensional MoS2 has potential as an electrocatalyst for next-generation energy technologies.


2016 ◽  
Vol 3 (11) ◽  
pp. 1376-1380 ◽  
Author(s):  
Xiangkai Kong ◽  
Xiaochen Shen ◽  
Changlin Zhang ◽  
Shirin Norooz Oliaee ◽  
Zhenmeng Peng

S edges were peeled off to disclose inner S as new under-coordinated atoms, which exposed more fresh active sites.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Zhang ◽  
Rutong Si ◽  
Hanshuo Liu ◽  
Ning Chen ◽  
Qi Wang ◽  
...  

Abstract Single atom catalysts exhibit particularly high catalytic activities in contrast to regular nanomaterial-based catalysts. Until recently, research has been mostly focused on single atom catalysts, and it remains a great challenge to synthesize bimetallic dimer structures. Herein, we successfully prepare high-quality one-to-one A-B bimetallic dimer structures (Pt-Ru dimers) through an atomic layer deposition (ALD) process. The Pt-Ru dimers show much higher hydrogen evolution activity (more than 50 times) and excellent stability compared to commercial Pt/C catalysts. X-ray absorption spectroscopy indicates that the Pt-Ru dimers structure model contains one Pt-Ru bonding configuration. First principle calculations reveal that the Pt-Ru dimer generates a synergy effect by modulating the electronic structure, which results in the enhanced hydrogen evolution activity. This work paves the way for the rational design of bimetallic dimers with good activity and stability, which have a great potential to be applied in various catalytic reactions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3273
Author(s):  
Kunjie Wang ◽  
Jiahui Zhang ◽  
Yachen Ye ◽  
Hongbin Ma ◽  
Bingxin Liu ◽  
...  

1T-phase molybdenum disulfide is supposed to be one of the non-precious metal-based electrocatalysts for the hydrogen evolution reaction with the highest potential. Herein, 1T-MoS2 nanosheets were anchored on N-doped carbon nanotubes by a simple hydrothermal process with the assistance of urea promotion transition of the 1T phase. Based on the 1T-MoS2 nanosheets anchored on the N-doped carbon nanotubes structures, 1T-MoS2 nanosheets can be said to have highly exposed active sites from edges and the basal plane, and the dopant N in carbon nanotubes can promote electron transfer between N-doped carbon nanotubes and 1T-MoS2 nanosheets. With the synergistic effects of this structure, the excellent 1T-MoS2/ N-doped carbon nanotubes catalyst has a small overpotential of 150 mV at 10 mA cm−2, a relatively low Tafel slope of 63 mV dec−1, and superior stability. This work proposes a new strategy to design high-performance hydrogen evolution reaction catalysts.


2017 ◽  
Vol 2 (4) ◽  
pp. 745-752 ◽  
Author(s):  
Peitao Liu ◽  
Jingyi Zhu ◽  
Jingyan Zhang ◽  
Pinxian Xi ◽  
Kun Tao ◽  
...  

2019 ◽  
Author(s):  
Yan Wang ◽  
Sagar Udyavara ◽  
Matthew Neurock ◽  
C. Daniel Frisbie

<div> <div> <div> <p> </p><div> <div> <div> <p>Electrocatalytic activity for hydrogen evolution at monolayer MoS2 electrodes can be enhanced by the application of an electric field normal to the electrode plane. The electric field is produced by a gate electrode lying underneath the MoS2 and separated from it by a dielectric. Application of a voltage to the back-side gate electrode while sweeping the MoS2 electrochemical potential in a conventional manner in 0.5 M H2SO4 results in up to a 140-mV reduction in overpotential for hydrogen evolution at current densities of 50 mA/cm2. Tafel analysis indicates that the exchange current density is correspondingly improved by a factor of 4 to 0.1 mA/cm2 as gate voltage is increased. Density functional theory calculations support a mechanism in which the higher hydrogen evolution activity is caused by gate-induced electronic charge on Mo metal centers adjacent the S vacancies (the active sites), leading to enhanced Mo-H bond strengths. Overall, our findings indicate that the back-gated working electrode architecture is a convenient and versatile platform for investigating the connection between tunable electronic charge at active sites and overpotential for electrocatalytic processes on ultrathin electrode materials.</p></div></div></div><br><p></p></div></div></div>


2021 ◽  
Author(s):  
Jingjing Liu ◽  
Wenyao Li ◽  
Zhe Cui ◽  
Jiaojiao Li ◽  
Fang Yang ◽  
...  

A core–shell CoMn-P@NG heterostructure electrode demonstrated impressive performance of hydrogen evolution over a broad pH range and maintained excellent stability.


Sign in / Sign up

Export Citation Format

Share Document