A high-energy sandwich-type self-powered biosensor based on DNA bioconjugates and a nitrogen doped ultra-thin carbon shell

2020 ◽  
Vol 8 (7) ◽  
pp. 1389-1395 ◽  
Author(s):  
Fu-Ting Wang ◽  
Yi-Han Wang ◽  
Jing Xu ◽  
Ke-Jing Huang

A high-energy self-powered sensing platform for the ultrasensitive detection of proteins is developed based on enzymatic biofuel cells (EBFCs) by using DNA bioconjugate assisted signal amplification.

Nanoscale ◽  
2021 ◽  
Author(s):  
Fu-Ting Wang ◽  
Ke-Jing Huang ◽  
Yangyang Hou ◽  
Xuecai Tan ◽  
Xu Wu ◽  
...  

A self-powered microRNAs biosensor with triple signal amplification systems is assembled through integration of three-dimensional DNA walker, enzymatic biofuel cells and capacitor. The DNA walker is designed from an enzyme-free...


2020 ◽  
Vol 306 ◽  
pp. 127556
Author(s):  
Liqun Zhang ◽  
Wenbin Liang ◽  
Qiaosheng Ran ◽  
Fei Liu ◽  
Dong Chen ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 41
Author(s):  
Jefferson Honorio Franco ◽  
Shelley D. Minteer ◽  
Adalgisa R. De Andrade

Biofuel cells use chemical reactions and biological catalysts (enzymes or microorganisms) to produce electrical energy, providing clean and renewable energy. Enzymatic biofuel cells (EBFCs) have promising characteristics and potential applications as an alternative energy source for low-power electronic devices. Over the last decade, researchers have focused on enhancing the electrocatalytic activity of biosystems and on increasing energy generation and electronic conductivity. Self-powered biosensors can use EBFCs while eliminating the need for an external power source. This review details improvements in EBFC and catalyst arrangements that will help to achieve complete substrate oxidation and to increase the number of collected electrons. It also describes how analytical techniques can be employed to follow the intermediates between the enzymes within the enzymatic cascade. We aim to demonstrate how a high-performance self-powered sensor design based on EBFCs developed for ethanol detection can be adapted and implemented in power devices for biosensing applications.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7629
Author(s):  
Su-Jin Jang ◽  
Jeong Han Lee ◽  
Seo Hui Kang ◽  
Yun Chan Kang ◽  
Kwang Chul Roh

The development of supercapacitors with high volumetric capacitance and high-rate performance has been an important research topic. Activated carbon (AC), which is a widely used material for supercapacitor electrodes, has different surface structures, porosities, and electrochemical properties. However, the low conductivity of the electrode material is a major problem for the efficient use of AC in supercapacitors. To tackle this challenge, we prepared conductive, additive-free electrodes for supercapacitors by a simple one-pot treatment of AC with melamine (nitrogen source), pitch, and sucrose (both carbon source). Nitrogen-doped and carbon-coated AC was successfully generated after high-temperature heat treatment. The AC was doped with approximately 0.5 at.% nitrogen, and coated with carbon leading to a decreased oxygen content. Thin carbon layers (~10 nm) were coated onto the outer surface of the AC, as shown in TEM images. The modification of the AC surface with a sucrose source is favorable, as it increases the electrical conductivity of AC up to 3.0 S cm−1, which is 4.3 times higher than in unmodified AC. The electrochemical performance of the modified AC was evaluated by conducting agent-free electrode. Although the obtained samples had slightly reduced surface areas after the surface modification, they maintained a high specific surface area of 1700 m2 g−1. The supercapacitor delivered a specific capacitance of 70.4 F cc−1 at 1 mA cm−1 and achieved 89.8% capacitance retention even at a high current density of 50 mA cm−2. Furthermore, the supercapacitor delivered a high energy density of 24.5 Wh kg−1 at a power density of 4650 W kg−1. This approach can be extended for a new strategy for conductivity additive-free electrodes in, e.g., supercapacitors, batteries, and fuel cells.


Sign in / Sign up

Export Citation Format

Share Document