Invisible photonic prints shown by UV illumination: combining photoluminescent and noniridescent structural colors

2019 ◽  
Vol 7 (38) ◽  
pp. 11776-11782 ◽  
Author(s):  
Dongpeng Yang ◽  
Guolong Liao ◽  
Shaoming Huang

Invisible photonic prints that become visible by UV light irradiation were prepared via the self-assembly of Y2O3:Eu colloidal particles into amorphous photonic crystals (APCs) with controlled fluorescent and noniridescent structural colors.

Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1143 ◽  
Author(s):  
Hai-Tao Ren ◽  
Jing Han ◽  
Ting-Ting Li ◽  
Qi Lin ◽  
Jia-Horng Lin ◽  
...  

The fate of arsenic in the water environment is of great concern. Here, the influences of oxalic acid and UV light illumination on the dissolution of naked ferrihydrite (Fhy), Fhy loaded with As(V) [Fhy*-As(V)], as well as the fate of As(V) at pH 3.0 were studied. With the assistance of oxalic acid, complexes of Fe(III)-oxalic acid produced on Fhy/Fhy*-As(V) were reduced to Fe(II)-oxalic acid by photo-induced electrons under UV light irradiation. UV light has nearly no impact on the release of As(V) in the system of Fhy*-As(V) without the assistance of oxalic acid. Nevertheless, in the existence of oxalic acid, UV light illumination resulted in the contents of liberated As(V) decreased by 775–1300% compared to that without light. Considering the coexistence of As(V), oxalic acid as well as iron oxides in aquatic environments, the present study revealed that UV illumination could enhance the retention of As(V) on Fhy in the acidic water environment containing oxalic acid.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1622
Author(s):  
Xiao-Pin Guo ◽  
Peng Zang ◽  
Yong-Mei Li ◽  
Dong-Su Bi

2-methylisoborneol (2-MIB) is a common taste and odor compound caused by off-flavor secondary metabolites, which represents one of the greatest challenges for drinking water utilities worldwide. A TiO2-coated activated carbon (TiO2/PAC) has been synthesized using the sol-gel method. A new TiO2/PAC photocatalyst has been successfully employed in photodegradation of 2-MIB under UV light irradiation. In addition, the combined results of XRD, SEM-EDX, FTIR and UV-Vis suggested that the nano-TiO2 had been successfully loaded on the surface of PAC. Experimental results of 2-MIB removal indicated that the adsorption capacities of PAC for 2-MIB were higher than that of TiO2/PAC. However, in the natural organic matter (NOM) bearing water, the removal efficiency of 2-MIB by TiO2/PAC and PAC were 97.8% and 65.4%, respectively, under UV light irradiation. Moreover, it was shown that the presence of NOMs had a distinct effect on the removal of MIB by TiO2/PAC and PAC. In addition, a simplified equivalent background compound (SEBC) model could not only be used to describe the competitive adsorption of MIB and NOM, but also represent the photocatalytic process. In comparison to other related studies, there are a few novel composite photocatalysts that could efficiently and rapidly remove MIB by the combination of adsorption and photocatalysis.


2021 ◽  
Vol 553 ◽  
pp. 149535
Author(s):  
Elisa Moretti ◽  
Elti Cattaruzza ◽  
Cristina Flora ◽  
Aldo Talon ◽  
Eugenio Casini ◽  
...  

2021 ◽  
Author(s):  
Yumei Mao ◽  
Xuehua Dong ◽  
Yuandan Deng ◽  
Jing Li ◽  
Ling Huang ◽  
...  

Two new zinc phosphites were prepared using the amino acid alanine as structure-directing agent. They have tubular and ladder-like structures exhibiting blue fluorescence upon UV light irradiation. Notably, the tubular...


1996 ◽  
Vol 54 (4) ◽  
pp. 331-337 ◽  
Author(s):  
M.Perla Colombini ◽  
Fabio Di Francesco ◽  
Roger Fuoco

1997 ◽  
Vol 105 (1219) ◽  
pp. 272-274
Author(s):  
Yutaka TAKAHASHI ◽  
Shigeo KOTAKE ◽  
Toshihiko OHTA ◽  
Akihito MATSUMURO ◽  
Masafumi SENOO

Sign in / Sign up

Export Citation Format

Share Document