In silico study of structure and water dynamics in CNT/polyamide nanocomposite reverse osmosis membranes

2020 ◽  
Vol 22 (39) ◽  
pp. 22324-22331
Author(s):  
Qi-an Gu ◽  
Ke Li ◽  
Shanlong Li ◽  
Rui Cui ◽  
Lifen Liu ◽  
...  

A comprehensive understanding of the role of CNTs in the reverse osmosis process is disclosed through in silico study.

2021 ◽  
Author(s):  
Tudor Vasiliu ◽  
Bogdan Florin Florin Craciun ◽  
Andrei Neamtu ◽  
Lilia Clima ◽  
Dragos Lucian Isac ◽  
...  

The biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as antifouling in biomedical devices. Experimental studies have shown...


2020 ◽  
Vol 11 (1) ◽  
pp. 20190126 ◽  
Author(s):  
B. J. M. van Rooij ◽  
G. Závodszky ◽  
A. G. Hoekstra ◽  
D. N. Ku

The influence of the flow environment on platelet aggregation is not fully understood in high-shear thrombosis. The objective of this study is to investigate the role of a high shear rate in initial platelet aggregation. The haemodynamic conditions in a microfluidic device are studied using cell-based blood flow simulations. The results are compared with in vitro platelet aggregation experiments performed with porcine whole blood (WB) and platelet-rich-plasma (PRP). We studied whether the cell-depleted layer in combination with high shear and high platelet flux can account for the distribution of platelet aggregates. High platelet fluxes at the wall were found in silico . In WB, the platelet flux was about twice as high as in PRP. Additionally, initial platelet aggregation and occlusion were observed in vitro in the stenotic region. In PRP, the position of the occlusive thrombus was located more downstream than in WB. Furthermore, the shear rates and stresses in cell-based and continuum simulations were studied. We found that a continuum simulation is a good approximation for PRP. For WB, it cannot predict the correct values near the wall.


Author(s):  
Jeremiah I. Ogah ◽  
Olatunji M. Kolawole ◽  
Steven O. Oguntoye ◽  
Muhammed Mustapha Suleiman

The rise in the incidence of cervical cancer globally has accentuate attention to the potential role of polyphenols as anticancer agents. Different studies have demonstrated the role of some polyphenols in altering Human Papillomavirus (HPV) carcinogenesis. Thus, this study was aimed at establishing the potentials of Schiff-based polyphenols from imesatin and satin as anticancer agents through in silico analysis. The polyphenols were synthesized and characterized using elemental analyses, spectroscopic analyses, UV-visible, Infrared, and Nuclear Magnetic Resonance (1H NMR and 13C, NMR). Molecular docking study of the polyphenols was carried out using Auto Dock Vina. The oncogenic E6 protein structure of HPV 16 was obtained from the protein bank (ID: 4XR8). The E6 proteins were prepared using AutoDock tools. Water molecules were removed from the protein molecules while hydrogen atoms were added. Also, the structures of Curcumin and Isomericitrin were obtained from PubChem. Results showed that three different Schiff based polyphenols were obtained from the synthesis; 3-(2’,4’-dimethoxy benzylidene hydrazono) indoline-2-one (DMBH), 3-(2’-hydroxy-4’-methoxy benzylidene hydrazono) indoline-2-one (HMBD), and 3-((4-4’-((2’’, 4’’-dimethoxy benzylidene amino) benzyl)phenyl)imino) indoline-2-one (DMBP). Higher ability of the docked polyphenols to bind to the E6/E6AP/p53 complex when compared to Curcumin was revealed. Also, results showed that the binding energy of Curcumin and Isomericitrin were -7.1kcal/mol and -8.4kcal/mol respectively while that of the polyphenols ranged from -7.4kcal/mol to -7.9kcal/mol. The molecular docking results of the polyphenols used in this study further confirm their potentials as strong anti-cancer agents.


2018 ◽  
Vol 5 (10) ◽  
pp. 289-301
Author(s):  
Ruma Ganguly ◽  
Sailesh K. Mehta

The role of amino acid is important to Jasmonate induce plant defense process. Jasmonic acid and amino acid Isoleucine conjugate (JA-Ile) has been found to be necessary to achieve such process effectively. We have examined the origin of such process computationally and showed that Isoleucine is more active compared to other Jasmonic acid conjugates. The epimerization process revealed that Isoleucine conjugated Jasmonic acid is energetically a favoured process compared to JA-Leu and JA-Val. Water has functioned as a catalyst in the whole epimerization process. This study would unravel the importance of Isoleucine in the Jasmonic acid induced plant defense process.


Desalination ◽  
2018 ◽  
Vol 429 ◽  
pp. 12-19 ◽  
Author(s):  
Diana Ferrando ◽  
David Toubiana ◽  
Nitzan Shtreimer Kandiyote ◽  
Thanh H. Nguyen ◽  
Ali Nejidat ◽  
...  

2013 ◽  
Vol 116 ◽  
pp. 426-432 ◽  
Author(s):  
Takahiro Fujioka ◽  
Nagayasu Oshima ◽  
Ryoichi Suzuki ◽  
Stuart J. Khan ◽  
Annalie Roux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document