Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity

2020 ◽  
Vol 11 (4) ◽  
pp. 3020-3031 ◽  
Author(s):  
Lei Qiao ◽  
Xina Dou ◽  
Shuqi Yan ◽  
Baohua Zhang ◽  
Chunlan Xu

Biogenic SeNPs synthesized by Lactobacillus casei ATCC 393 reversed diquat-induced oxidative damage to the epithelium by activating the Nrf2 signaling pathway.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhifeng Jiang ◽  
Feiyu Yang ◽  
Jingbo Qie ◽  
Chaoyuan Jin ◽  
Feng Zhang ◽  
...  

Intestinal barrier dysfunction is characterized by increased intestinal permeability to lumen endotoxin, showing remarkable predisposition to immune enteropathy, and colorectal cancer tumor necrosis factor (TNF)-α is associated with this pathological process, while the mechanism remains unknown. In this study, different doses of TNF-α were used for Caco-2 cell treatment. We discovered that miR-21-3p expression was obviously increased by TNF-α in a dose-dependent manner. Further study demonstrated that TNF-α could upregulate miR-21-3p expression through the NF-κB signaling pathway. Then, TargetScan and miRWalk miRNA–mRNA interaction prediction online tools were introduced, and metadherin (MTDH) was screened out as a potential target of miR-21-3p. We subsequently found that miR-21-3p could directly target the 3′-untranslated region (UTR) of MTDH mRNA and inhibit its expression. Furthermore, it was demonstrated that miR-21-3p could regulate the Wnt signaling pathway by targeting MTDH mRNA, suggesting the effect of miR-21-3p/MTDH/Wnt axis on intestinal barrier dysfunction. Our findings provide a novel potential biomarker and therapeutic target for intestinal barrier dysfunction and related diseases.


2006 ◽  
Vol 51 (9) ◽  
pp. 1549-1556 ◽  
Author(s):  
Desheng Song ◽  
Bin Shi ◽  
Hua Xue ◽  
Yousheng Li ◽  
Xiaodong Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document