Effect of emulsifiers on linseed oil emulsion structure, lipolysis and oxidation during in vitro digestion

2020 ◽  
Vol 11 (11) ◽  
pp. 10126-10136
Author(s):  
Sophie Lamothe ◽  
Émilie Jolibois ◽  
Michel Britten

The type of emulsifier determines the structural changes of emulsions, lipolysis and lipid oxidation during in vitro digestion.

2021 ◽  
Vol 350 ◽  
pp. 129246
Author(s):  
Serena Martini ◽  
Alice Cattivelli ◽  
Angela Conte ◽  
Davide Tagliazucchi

LWT ◽  
2019 ◽  
Vol 112 ◽  
pp. 108223 ◽  
Author(s):  
M. Espert ◽  
J. Borreani ◽  
I. Hernando ◽  
A. Quiles ◽  
T. Sanz ◽  
...  

2008 ◽  
Vol 14 (1) ◽  
pp. 79-86 ◽  
Author(s):  
O. Kenny ◽  
Y. O'Callaghan ◽  
N.M. O'Brien

Ingredients are incorporated into meat and meat products to produce a ``healthier'' product. However, the effect of ingredient addition on availability of nutrients endogenous to foods is generally not considered. This study investigated the availability and cellular uptake of α-tocopherol from supplemented sausages with the aid of an in vitro digestion procedure coupled with a Caco-2 cell model. Sausages were formulated with the addition of 3% or 10% ingredients (wheat bran, oat bran, soya protein, whey protein, olive oil, linseed oil, sunflower oil, and wheatgerm oil) and subjected to a two-phase in vitro system that simulates the digestive process in humans. Micelles were isolated from the digestate by ultracentrifugation. Of the ingredients selected for addition to sausage meat, only sunflower oil, and wheatgerm oil enhanced the micellarization of α-tocopherol, resulting in increased transfer from the test food to micelles. When ingredients were added at the 3% supplementation level, olive oil enhanced cellular uptake of α-tocopherol. Cellular uptake was not enhanced further with higher oil supplementation (3% vs. 10%). These results indicated that addition of ingredients to sausages (fibres, protein derivatives or vegetable oils) did not have a detrimental effect on α-tocopherol uptake and olive oil at the 3% supplementation level enhanced α-tocopherol availability.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6667
Author(s):  
Patricia Reboredo-Rodríguez ◽  
Carmen González-Barreiro ◽  
Elena Martínez-Carballo ◽  
Noelia Cambeiro-Pérez ◽  
Raquel Rial-Otero ◽  
...  

The Mediterranean diet includes virgin olive oil (VOO) as the main fat and olives as snacks. In addition to providing nutritional and organoleptic properties, VOO and the fruits (olives) contain an extensive number of bioactive compounds, mainly phenolic compounds, which are considered to be powerful antioxidants. Furthermore, olive byproducts, such as olive leaves, olive pomace, and olive mill wastewater, considered also as rich sources of phenolic compounds, are now valorized due to being mainly applied in the pharmaceutical and nutraceutical industries. The digestive system must physically and chemically break down these ingested olive-related products to release their phenolic compounds, which will be further metabolized to be used by the human organism. The first purpose of this review is to provide an overview of the current status of in-vitro static digestion models for olive-related products. In this sense, the in-vitro gastrointestinal digestion methods are widely used with the following aims: (i) to study how phenolic compounds are released from their matrices and to identify structural changes of phenolic compounds after the digestion of olive fruits and oils and (ii) to support the functional value of olive leaves and byproducts generated in the olive industry by assessing their health properties before and after the gastrointestinal process. The second purpose of this review is to survey and discuss all the results available to date.


2020 ◽  
Vol 137 ◽  
pp. 109528 ◽  
Author(s):  
Serena Martini ◽  
Davide Tagliazucchi ◽  
Giovanna Minelli ◽  
Domenico Pietro Lo Fiego

Author(s):  
Susana C. M. Pinho ◽  
Miguel Faria ◽  
Susana Casal ◽  
M. Madalena C. Sobral ◽  
Rui Alves ◽  
...  

LWT ◽  
2021 ◽  
pp. 111802
Author(s):  
Vivekkumar Patel ◽  
Jonathan Andrade ◽  
Dérick Rousseau

Sign in / Sign up

Export Citation Format

Share Document