Isoleucine increases muscle mass through promoting myogenesis and intramyocellular fat deposition

2021 ◽  
Author(s):  
Shuge Liu ◽  
Yunmei Sun ◽  
Rui Zhao ◽  
Yingqian Wang ◽  
Wanrong Zhang ◽  
...  

Isoleucine (Ile), as a branched-chain amino acid (BCAA), has a vital role in regulating body weight and muscle protein synthesis.

2019 ◽  
Vol 38 ◽  
pp. S308
Author(s):  
C.J. Fuchs ◽  
W.J.H. Hermans ◽  
A.M. Holwerda ◽  
J.S.J. Smeets ◽  
J.M. Senden ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 109-109
Author(s):  
Kristine Urschel

Abstract Protein has been recognized as an essential nutrient for animals for well over 100 years. Protein plays many important structural and metabolic roles, and some of its component amino acids have additional functions, including as regulatory molecules, as energy substrates and in the synthesis of other non-protein molecules. Skeletal muscle makes up approximately 50% of body weight in horses, with protein being the major non-water component. As an athletic species, the development and maintenance of muscle mass is of the utmost importance in horses. Because muscle mass is largely determined by the balance of rates of muscle protein synthesis and breakdown, understanding how these pathways are regulated and influenced by dietary protein and amino acid provision is essential. Historically, much research regarding protein nutrition in horses has focused on the protein digestibility of different feed ingredients, and the adequacy of different protein sources in supporting the growth and maintenance of horses. This presentation will focus on some of the current areas of active research relating to protein nutrition in horses: the activation of the signaling pathways that regulate muscle protein synthesis, amino acid supplementation in athletic horses, protein metabolism in aged and horses and those with insulin dysregulation, and amino acid and protein nutrition in predominantly forage-fed horses. There are many exciting opportunities for future research in the area of protein and amino acid nutrition in horses across the lifespan.


1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


2020 ◽  
pp. 1-11 ◽  
Author(s):  
Eunice T. Olaniyan ◽  
Fiona O’Halloran ◽  
Aoife L. McCarthy

Abstract Amino acid bioavailability is critical for muscle protein synthesis (MPS) and preservation of skeletal muscle mass (SMM). Ageing is associated with reduced responsiveness of MPS to essential amino acids (EAA). Further, the older adult population experiences anabolic resistance, leading to increased frailty, functional decline and depleted muscle mass preservation, which facilitates the need for increased protein intake to increase their SMM. This review focuses on the role of proteins in muscle mass preservation and examines the contribution of EAA and protein intake patterns to MPS. Leucine is the most widely studied amino acid for its role as a potent stimulator of MPS, though due to inadequate data little is yet known about the role of other EAA. Reaching a conclusion on the best pattern of protein intake has proven difficult due to conflicting studies. A mixture of animal and plant proteins can contribute to increased MPS and potentially attenuate muscle wasting conditions; however, there is limited research on the biological impact of protein blends in older adults. While there is some evidence to suggest that liquid protein foods with higher than the RDA of protein may be the best strategy for achieving high MPS rates in older adults, clinical trials are warranted to confirm an association between food form and SMM preservation. Further research is warranted before adequate recommendations and strategies for optimising SMM in the elderly population can be proposed.


1990 ◽  
Vol 79 (5) ◽  
pp. 457-466 ◽  
Author(s):  
Rita J. Louard ◽  
Eugene J. Barrett ◽  
Robert A. Gelfand

1. Using the forearm balance method, together with systemic infusions of l-[ring-2,6-3H]phenylalanine and l-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/ or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.


2020 ◽  
Vol 150 (11) ◽  
pp. 2931-2941 ◽  
Author(s):  
Alistair J Monteyne ◽  
Mariana O C Coelho ◽  
Craig Porter ◽  
Doaa R Abdelrahman ◽  
Thomas S O Jameson ◽  
...  

ABSTRACT Background We have shown that ingesting a large bolus (70 g) of the fungal-derived, whole food mycoprotein robustly stimulates muscle protein synthesis (MPS) rates. Objective The aim of this study was to determine if a lower dose (35 g) of mycoprotein enriched with branched-chain amino acids (BCAAs) stimulates MPS to the same extent as 70 g of mycoprotein in resistance-trained young men. Methods Nineteen men [aged 22 ± 1 y, BMI (kg/m2): 25 ± 1] took part in a randomized, double-blind, parallel-group study. Participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and ingested either 70 g mycoprotein (31.5 g protein; MYCO; n = 10) or 35 g BCAA-enriched mycoprotein (18.7 g protein: matched on BCAA content; ENR; n = 9) following a bout of unilateral resistance exercise. Blood and bilateral quadriceps muscle samples were obtained before exercise and protein ingestion and during a 4-h postprandial period to assess MPS in rested and exercised muscle. Two- and 3-factor ANOVAs were used to detect differences in plasma amino acid kinetics and mixed muscle fractional synthetic rates, respectively. Results Postprandial plasma BCAA concentrations increased more rapidly and to a larger degree in ENR compared with MYCO. MPS increased with protein ingestion (P ≤ 0.05) but to a greater extent following MYCO (from 0.025% ± 0.006% to 0.057% ± 0.004% · h−1 in rested muscle, and from 0.024% ± 0.007% to 0.072% ± 0.005% · h−1 in exercised muscle; P &lt; 0.0001) compared with ENR (from 0.031% ± 0.003% to 0.043% ± 0.005% · h−1 in rested muscle, and 0.027% ± 0.005% to 0.052% ± 0.005% · h−1 in exercised muscle; P &lt; 0.01) ingestion. Postprandial MPS rates were greater in MYCO compared with ENR (P &lt; 0.01). Conclusions The ingestion of lower-dose BCAA-enriched mycoprotein stimulates resting and postexercise MPS rates, but to a lesser extent compared with the ingestion of a BCAA-matched 70-g mycoprotein bolus in healthy young men. This trial was registered at clinicaltrials.gov as 660065600.


2019 ◽  
Vol 110 (4) ◽  
pp. 862-872 ◽  
Author(s):  
Cas J Fuchs ◽  
Wesley J H Hermans ◽  
Andrew M Holwerda ◽  
Joey S J Smeets ◽  
Joan M Senden ◽  
...  

ABSTRACTBackgroundProtein ingestion increases muscle protein synthesis rates. However, limited data are currently available on the effects of branched-chain amino acid (BCAA) and branched-chain ketoacid (BCKA) ingestion on postprandial muscle protein synthesis rates.ObjectiveThe aim of this study was to compare the impact of ingesting 6 g BCAA, 6 g BCKA, and 30 g milk protein (MILK) on the postprandial rise in circulating amino acid concentrations and subsequent myofibrillar protein synthesis rates in older males.MethodsIn a parallel design, 45 older males (age: 71 ± 1 y; BMI: 25.4 ± 0.8 kg/m2) were randomly assigned to ingest a drink containing 6 g BCAA, 6 g BCKA, or 30 g MILK. Basal and postprandial myofibrillar protein synthesis rates were assessed by primed continuous l-[ring-13C6]phenylalanine infusions with the collection of blood samples and muscle biopsies.ResultsPlasma BCAA concentrations increased following test drink ingestion in all groups, with greater increases in the BCAA and MILK groups compared with the BCKA group (P < 0.05). Plasma BCKA concentrations increased following test drink ingestion in all groups, with greater increases in the BCKA group compared with the BCAA and MILK groups (P < 0.05). Ingestion of MILK, BCAA, and BCKA significantly increased early myofibrillar protein synthesis rates (0–2 h) above basal rates (from 0.020 ± 0.002%/h to 0.042 ± 0.004%/h, 0.022 ± 0.002%/h to 0.044 ± 0.004%/h, and 0.023 ± 0.003%/h to 0.044 ± 0.004%/h, respectively; P < 0.001), with no differences between groups (P > 0.05). Myofibrillar protein synthesis rates during the late postprandial phase (2–5 h) remained elevated in the MILK group (0.039 ± 0.004%/h; P < 0.001), but returned to baseline values following BCAA and BCKA ingestion (0.024 ± 0.005%/h and 0.024 ± 0.005%/h, respectively; P > 0.05).ConclusionsIngestion of 6 g BCAA, 6 g BCKA, and 30 g MILK increases myofibrillar protein synthesis rates during the early postprandial phase (0–2 h) in vivo in healthy older males. The postprandial increase following the ingestion of 6 g BCAA and BCKA is short-lived, with higher myofibrillar protein synthesis rates only being maintained following the ingestion of an equivalent amount of intact milk protein. This trial was registered at Nederlands Trial Register (www.trialregister.nl) as NTR6047.


2020 ◽  
Vol 9 (10) ◽  
pp. 3239
Author(s):  
Chisato Saeki ◽  
Tomoya Kanai ◽  
Masanori Nakano ◽  
Tsunekazu Oikawa ◽  
Yuichi Torisu ◽  
...  

Branched-chain amino acid (BCAA) and insulin-like growth factor 1 (IGF-1) are essential for muscle protein synthesis. We investigated the association of serum BCAA and IGF-1 levels with sarcopenia and gait speed in 192 patients with liver cirrhosis (LC). Sarcopenia was diagnosed according to the Japan Society of Hepatology criteria. Slow gait speed was defined as <1.0 m/s. Subjects were divided into three groups based on baseline BCAA or IGF-1 levels: low (L), intermediate (I), and high (H) groups. The L-BCAA group had the highest prevalence of sarcopenia (60.4%, p < 0.001) and slow gait speed (56.3%, p = 0.008), whereas the H-BCAA group had the lowest prevalence of sarcopenia (8.5%, p < 0.001). The L-IGF-1 group showed the highest prevalence of sarcopenia (46.9%, p < 0.001), whereas the H-IGF-1 group had the lowest prevalence of sarcopenia (10.0%, p < 0.001) and slow gait speed (18.0%, p = 0.003). Using the optimal BCAA and IGF-1 cutoff values for predicting sarcopenia (372 μmol/L and 48.5 ng/mL, respectively), the sensitivity and specificity were 0.709 and 0.759 for BCAA and 0.636 and 0.715 for IGF-1, respectively. Low serum BCAA and IGF-1 levels were associated with sarcopenia and slow gait speed in patients with LC.


Sign in / Sign up

Export Citation Format

Share Document