Can non-heterocyclic hydrophobic amino acids when tethered at the C-terminus of 12-hydroxy stearic acid-based amphiphilic derivatives drive hydrogelation propensity effectively?

2020 ◽  
Vol 44 (22) ◽  
pp. 9213-9222
Author(s):  
Ankita Sharma ◽  
Arindam Gupta ◽  
Naureen Khan ◽  
Anita DuttKonar

The amphiphilic derivatives comprising of non-heterocyclic, hydrophobic amino acids at the C-terminal end, not only displayed excellent gelation ability but also high mechanical integrity in comparison to the heterocyclic analogues.

2000 ◽  
Vol 182 (16) ◽  
pp. 4545-4556 ◽  
Author(s):  
Michael L. Howell ◽  
Eyad Alsabbagh ◽  
Ju-Fang Ma ◽  
Urs A. Ochsner ◽  
Martin G. Klotz ◽  
...  

ABSTRACT In this study, we have cloned the ankB gene, encoding an ankyrin-like protein in Pseudomonas aeruginosa. TheankB gene is composed of 549 bp encoding a protein of 183 amino acids that possesses four 33-amino-acid ankyrin repeats that are a hallmark of erythrocyte and brain ankyrins. The location ofankB is 57 bp downstream of katB, encoding a hydrogen peroxide-inducible catalase, KatB. Monomeric AnkB is a 19.4-kDa protein with a pI of 5.5 that possesses 22 primarily hydrophobic amino acids at residues 3 to 25, predicting an inner-membrane-spanning motif with the N terminus in the cytoplasm and the C terminus in the periplasm. Such an orientation in the cytoplasmic membrane and, ultimately, periplasmic space was confirmed using AnkB-BlaM and AnkB-PhoA protein fusions. Circular dichroism analysis of recombinant AnkB minus its signal peptide revealed a secondary structure that is ∼65% α-helical. RNase protection and KatB- and AnkB-LacZ translational fusion analyses indicated that katBand ankB are part of a small operon whose transcription is induced dramatically by H2O2, and controlled by the global transactivator OxyR. Interestingly, unlike the spherical nature of ankyrin-deficient erythrocytes, the cellular morphology of anankB mutant was identical to that of wild-type bacteria, yet the mutant produced more membrane vesicles. The mutant also exhibited a fourfold reduction in KatB activity and increased sensitivity to H2O2, phenotypes that could be complemented in trans by a plasmid constitutively expressing ankB. Our results suggest that AnkB may form an antioxidant scaffolding with KatB in the periplasm at the cytoplasmic membrane, thus providing a protective lattice work for optimal H2O2 detoxification.


2004 ◽  
Vol 85 (2) ◽  
pp. 535-545 ◽  
Author(s):  
Aiming Wang ◽  
Sumin Han ◽  
Hélène Sanfaçon

The putative NTP-binding protein (NTB) of Tomato ringspot nepovirus (ToRSV) contains a hydrophobic region at its C terminus consisting of two adjacent stretches of hydrophobic amino acids separated by a few amino acids. In infected plants, the NTB–VPg polyprotein (containing the domain for the genome-linked protein) is associated with endoplasmic reticulum-derived membranes that are active in ToRSV replication. Recent results from proteinase K protection assays suggested a luminal location for the VPg domain in infected plants, providing support for the presence of a transmembrane domain at the C terminus of NTB. In this study, we have shown that NTB–VPg associates with canine microsomal membranes in the absence of other viral proteins in vitro and adopts a topology similar to that observed in vivo in that the VPg is present in the lumen. Truncated proteins containing 60 amino acids at the C terminus of NTB and the entire VPg exhibited a similar topology, confirming that this region of the protein contains a functional transmembrane domain. Deletion of portions of the C-terminal hydrophobic region of NTB by mutagenesis and introduction of glycosylation sites to map the luminal regions of the protein revealed that only the first stretch of hydrophobic amino acids traverses the membrane, while the second stretch of hydrophobic amino acids is located in the lumen. Our results provide additional evidence supporting the hypothesis that the NTB–VPg polyprotein acts as a membrane-anchor for the replication complex.


2003 ◽  
Vol 31 (6) ◽  
pp. 1238-1242 ◽  
Author(s):  
N. Borgese ◽  
S. Brambillasca ◽  
P. Soffientini ◽  
M. Yabal ◽  
M. Makarow

A group of integral membrane proteins, known as C-tail anchored, is defined by the presence of a cytosolic N-terminal domain that is anchored to the phospholipid bilayer by a single segment of hydrophobic amino acids close to the C-terminus. The mode of insertion into membranes of these proteins, many of which play key roles in fundamental intracellular processes, is obligatorily post-translational, is highly specific and may be subject to regulatory processes that modulate the protein's function. Recent work has demonstrated that tail-anchored proteins translocate their C-termini across the endoplasmic reticulum membrane by a mechanism different from that used for Sec61-dependent post-translational signal-peptide-driven translocation. Here we summarize recent results on the insertion of tail-anchored proteins and discuss possible mechanisms that could be involved.


1985 ◽  
Vol 232 (3) ◽  
pp. 851-858 ◽  
Author(s):  
Y Takada ◽  
R A Skidgel ◽  
E G Erdös

Human urinary active kallikrein and prokallikrein were separated on DEAE-cellulose and octyl-Sepharose columns and both purified to homogeneity by affinity chromatography, gel filtration and hydrophobic h.p.l.c. Prokallikrein was monitored during purification by trypsin activation followed by determination of both amidase and kininogenase activity. After trypsin activation, purified prokallikrein had a specific kininogenase activity of 39.4 micrograms of bradykinin equivalent/min per mg and amidase activity of 16.5 mumol/min per mg with D-Val-Leu-Arg-7-amino-4-trifluoromethylcoumarin. Purified active kallikrein had a specific activity of 47 micrograms of bradykinin/min per mg. The molecular mass of prokallikrein was 48 kDa on electrophoresis and 53 kDa on gel filtration whereas active kallikrein gave values of 46 kDa and 53 kDa respectively. Antisera to active and prokallikrein were obtained. In double immunodiffusion and immunoelectrophoresis, antiserum to active kallikrein reacted with active and pro-kallikrein. Antiserum to prokallikrein contained antibodies to determinants not found in active kallikrein, presumably due to the presence of the activation peptide in the proenzyme. Human prokallikrein can be activated by thermolysin, trypsin and human plasma kallikrein. Activation of 50% of the prokallikrein (1.35 microM) was achieved in 30 min with 25 nM-thermolysin, 78 nM-trypsin or 180 nM-human plasma kallikrein. Thus thermolysin was the most effective activator. Thermolysin activated prokallikrein by releasing active kallikrein with N-terminal Ile1-Val2. Thus human tissue (glandular) prokallikrein can be activated by two types of enzymes: serine proteinases, which cleave at the C-terminus of basic amino acids, and by a metalloproteinase that cleaves at the N-terminus of hydrophobic amino acids.


1993 ◽  
Vol 69 (05) ◽  
pp. 485-489 ◽  
Author(s):  
Isabelle Djaffar ◽  
Didier Vilette ◽  
Dominique Pidard ◽  
Jean-Luc Wautier ◽  
Jean-Philippe Rosa

SummaryThe human platelet antigen (HPA) 3 system is expressed on GPIIb, one subunit of GPIIb-IIIa, the platelet fibrinogen receptor. It was recently shown that HPA-3 was associated with an Ile843/Ser polymorphism. To investigate further HPA-3 determinant structure, we localized an HPA-3a determinant, recognized by the alloantiserum Leka, within the last 29 amino acids of GPIIbα. This region encompasses the polymorphic Ile843, which, as expected, is substituted into Ser in Leka-negative individuals, as shown by DNA sequence after polymerase chain reaction on platelet RNA. In addition, contribution of glycosylation to the determinant structure was demonstrated since the Leka antigenicity was strongly decreased after specifically removing nonterminal O-linked sugars, but not terminal sialic acids. We have thus refined the localization of an HPA-3a determinant within the last 29 amino acids, including Ile843, of GPIIb heavy chain, and shown that the Leka HPA-3a determinant is dependent, in part, upon the serine-linked carbohydrates adjacent to Ile/Ser843.


1980 ◽  
Vol 45 (2) ◽  
pp. 482-490 ◽  
Author(s):  
Jaroslav Vičar ◽  
François Piriou ◽  
Pierre Fromageot ◽  
Karel Bláha ◽  
Serge Fermandjian

The diastereoisomeric pairs of cyclodipeptides cis- and trans-cyclo(Ala-Ala), cyclo(Ala-Phe), cyclo(Val-Val) and cyclo(Leu-Leu) containing 85% 13C enriched amino-acid residues were synthesized and their 13C-13C coupling constants were measured. The combination of 13C-13C and 1H-1H coupling constants enabled to estimate unequivocally the side chain conformation of the valine and leucine residues.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 926
Author(s):  
Maria C. Martins ◽  
Susana F. Fernandes ◽  
Bruno A. Salgueiro ◽  
Jéssica C. Soares ◽  
Célia V. Romão ◽  
...  

Flavodiiron proteins (FDPs) are a family of modular and soluble enzymes endowed with nitric oxide and/or oxygen reductase activities, producing N2O or H2O, respectively. The FDP from Escherichia coli, which, apart from the two core domains, possesses a rubredoxin-like domain at the C-terminus (therefore named flavorubredoxin (FlRd)), is a bona fide NO reductase, exhibiting O2 reducing activity that is approximately ten times lower than that for NO. Among the flavorubredoxins, there is a strictly conserved amino acids motif, -G[S,T]SYN-, close to the catalytic diiron center. To assess its role in FlRd’s activity, we designed several site-directed mutants, replacing the conserved residues with hydrophobic or anionic ones. The mutants, which maintained the general characteristics of the wild type enzyme, including cofactor content and integrity of the diiron center, revealed a decrease of their oxygen reductase activity, while the NO reductase activity—specifically, its physiological function—was almost completely abolished in some of the mutants. Molecular modeling of the mutant proteins pointed to subtle changes in the predicted structures that resulted in the reduction of the hydration of the regions around the conserved residues, as well as in the elimination of hydrogen bonds, which may affect proton transfer and/or product release.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 977-986 ◽  
Author(s):  
Yangsuk Park ◽  
John Hanish ◽  
Arthur J Lustig

Abstract Previous studies from our laboratory have demonstrated that tethering of Sir3p at the subtelomeric/telomeric junction restores silencing in strains containing Rap1-17p, a mutant protein unable to recruit Sir3p. This tethered silencing assay serves as a model system for the early events that follow recruitment of silencing factors, a process we term initiation. A series of LexA fusion proteins in-frame with various Sir3p fragments were constructed and tested for their ability to support tethered silencing. Interestingly, a region comprising only the C-terminal 144 amino acids, termed the C-terminal domain (CTD), is both necessary and sufficient for restoration of silencing. Curiously, the LexA-Sir3N205 mutant protein overcomes the requirement for the CTD, possibly by unmasking a cryptic initiation site. A second domain spanning amino acids 481-835, termed the nonessential for initiation domain (NID), is dispensable for the Sir3p function in initiation, but is required for the recruitment of the Sir4p C terminus. In addition, in the absence of the N-terminal 481 amino acids, the NID negatively influences CTD activity. This suggests the presence of a third region, consisting of the N-terminal half (1-481) of Sir3p, termed the positive regulatory domain (PRD), which is required to initiate silencing in the presence of the NID. These data suggest that the CTD “active” site is under both positive and negative control mediated by multiple Sir3p domains.


Sign in / Sign up

Export Citation Format

Share Document