scholarly journals A novel palmitic acid hydroxy stearic acid (5‐PAHSA) plays a neuroprotective role by inhibiting phosphorylation of the m‐TOR‐ULK1 pathway and regulating autophagy

Author(s):  
Jian‐tao Wang ◽  
Zhong‐yu Yu ◽  
Ying‐hong Tao ◽  
Ying‐chao Liu ◽  
Yan‐mei Wang ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Teresa Kellerer ◽  
Karin Kleigrewe ◽  
Beate Brandl ◽  
Thomas Hofmann ◽  
Hans Hauner ◽  
...  

Background: Fatty acid esters of hydroxy fatty acids (FAHFAs) are a group of fatty acids with potential anti-inflammatory and anti-diabetic effects. The blood levels of FAHFAs and their regulation in humans have hardly been studied.Objective: We aimed to investigate serum FAHFA levels in well-characterized human cohorts, to evaluate associations with age, sex, BMI, weight loss, diabetic status, and diet.Methods: We analyzed levels of stearic-acid-9-hydroxy-stearic-acid (9-SAHSA), oleic-acid-9-hydroxy-stearic-acid (9-OAHSA) and palmitic-acid-9-hydroxy-palmitic-acid (9-PAHPA) as well as different palmitic acid-hydroxy-stearic-acids (PAHSAs) by HPLC-MS/MS with the use of an internal standard in various cohorts: A cohort of different age groups (18–25y; 40–65y; 75–85y; Σn = 60); severely obese patients undergoing bariatric surgery and non-obese controls (Σn = 36); obese patients with and without diabetes (Σn = 20); vegetarians/vegans (n = 10) and omnivores (n = 9); and young men before and after acute overfeeding with saturated fatty acids (SFA) (n = 15).Results: Omnivores had substantially higher FAHFA levels than vegetarians/vegans [median (25th percentile; 75th percentile) tFAHFAs = 12.82 (7.57; 14.86) vs. 5.86 (5.10; 6.71) nmol/L; P < 0.05]. Dietary overfeeding by supplementation of SFAs caused a significant increase within 1 week [median tFAHFAs = 4.31 (3.31; 5.27) vs. 6.96 (6.50; 7.76) nmol/L; P < 0.001]. Moreover, obese patients had lower FAHFA levels than non-obese controls [median tFAHFAs = 3.24 (2.80; 4.30) vs. 5.22 (4.18; 7.46) nmol/L; P < 0.01] and surgery-induced weight loss increased 9-OAHSA level while other FAHFAs were not affected. Furthermore, significant differences in some FAHFA levels were found between adolescents and adults or elderly, while no differences between sexes and between diabetic and non-diabetic individuals were detected.Conclusions: FAHFA serum levels are strongly affected by high SFA intake and reduced in severe obesity. Age also may influence FAHFA levels, whereas there was no detectable relation with sex and diabetic status. The physiological role of FAHFAs in humans remains to be better elucidated.Trial Registration: All studies referring to these analyses were registered in the German Clinical Trial Register (https://www.drks.de/drks_web/) with the numbers DRKS00009008, DRKS00010133, DRKS00006211, and DRKS00009797.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (18) ◽  
pp. 2873-2882 ◽  
Author(s):  
Basel Bandak ◽  
Lian Yi ◽  
Michael G. Roper

A microfluidic device was developed to investigate the effects of a potential anti-diabetic lipid on patterns of insulin secretion.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 162
Author(s):  
Enrique Gomez ◽  
Nuria Canela ◽  
Pol Herrero ◽  
Adrià Cereto ◽  
Isabel Gimeno ◽  
...  

This work describes the use of mass spectrometry-based metabolomics as a non-invasive approach to accurately predict birth prior to embryo transfer (ET) starting from embryo culture media and plasma recipient. Metabolomics was used here as a predictive platform. Day-6 in vitro produced embryos developed singly in modified synthetic oviduct fluid culture medium (CM) drops for 24 h were vitrified as Day-7 blastocysts and transferred to recipients. Day-0 and Day-7 recipient plasma (N = 36 × 2) and CM (N = 36) were analyzed by gas chromatography coupled to the quadrupole time of flight mass spectrometry (GC-qTOF). Metabolites quantified in CM and plasma were analyzed as a function to predict pregnancy at Day-40, Day-62, and birth (univariate and multivariate statistics). Subsequently, a Boolean matrix (F1 score) was constructed with metabolite pairs (one from the embryo, and one from the recipient) to combine the predictive power of embryos and recipients. Validation was performed in independent cohorts of ETs analyzed. Embryos that did not reach birth released more stearic acid, capric acid, palmitic acid, and glyceryl monostearate in CM (i.e., (p < 0.05, FDR < 0.05, Receiver Operator Characteristic—area under curve (ROC-AUC)> 0.669). Within Holstein recipients, hydrocinnamic acid, alanine, and lysine predicted birth (ROC-AUC > 0.778). Asturiana de los Valles recipients that reached birth showed lower concentrations of 6-methyl-5-hepten-2-one, stearic acid, palmitic acid, and hippuric acid (ROC-AUC > 0.832). Embryonal capric acid and glyceryl-monostearate formed F1 scores generally >0.900, with metabolites found both to differ (e.g., hippuric acid, hydrocinnamic acid) or not (e.g., heptadecanoic acid, citric acid) with pregnancy in plasmas, as hypothesized. Efficient lipid metabolism in the embryo and the recipient can allow pregnancy to proceed. Changes in phenolics from plasma suggest that microbiota and liver metabolism influence the pregnancy establishment in cattle.


1993 ◽  
Vol 268 (15) ◽  
pp. 11394-11400 ◽  
Author(s):  
T. Fujimoto ◽  
E. Stroud ◽  
R.E. Whatley ◽  
S.M. Prescott ◽  
L. Muszbek ◽  
...  
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Junliang Lu ◽  
Jinyan Lang ◽  
Na Wang ◽  
Xinhui Wang ◽  
Ping Lan ◽  
...  

Abstract In this paper, we provide a new approach for the anionic modification and functional application of nanocellulose. The nanocrystalline cellulose (NCC) is prepared from microcrystalline cellulose (MCC) and modified by fatty acids (lauric acid, palmitic acid and stearic acid). Ammonium ceric sulfate or hydrogen peroxide/ferrous sulfate being used as an initiator, three kinds of modified nanocrystalline cellulose (MNCC) can be synthesized at low temperature. The terminology for these MNCC is L-MNCC (NCC modified by lauric acid), P-MNCC (NCC modified by palmitic acid) and S-MNCC (NCC modified by stearic acid). Compared with those existing synthesized methods, the reaction condition is mild, and the modified products show strong stability. It can be seen from morphological structure analysis and reaction conditions analysis of MNCC that the original structure of cellulose is changed slightly. And the optimal conditions for preparing MNCC are obtained. The best yields of L-MNCC, P-MNCC and S-MNCC are 54.2 %, 20.9 % and 14.5 %, respectively.


2012 ◽  
Vol 66 (2) ◽  
pp. 207-209 ◽  
Author(s):  
Boris Pejin ◽  
Ljubodrag Vujisic ◽  
Marko Sabovljevic ◽  
Vele Tesevic ◽  
Vlatka Vajs

The fatty acid composition of the moss species Atrichum undulatum (Hedw.) P. Beauv. (Polytrichaceae) and Hypnum andoi A.J.E. Sm. (Hypnaceae) collected in winter time were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) as a contribution to their chemistry. Eight fatty acids were identified in the chloroform/methanol extract 1:1 of A. undulatum (linoleic acid 26.80%, palmitic acid 22.17%, ?-linolenic acid 20.50%, oleic acid 18.49%, arachidonic acid 6.21%, stearic acid 3.34%, cis-5,8,11,14,17-eicosapentaenoic acid 1.52% and behenic acid 1.01%), while six fatty acids were found in the same type of extract of H. andoi (palmitic acid 63.48%, erucic acid 12.38%, stearic acid 8.08%, behenic acid 6.26%, lignoceric acid 5.16% and arachidic acid 4.64%). According to this study, the moss A. undulatum can be considered as a good source of both essential fatty acids for humans (linoleic acid and ?-linolenic acid) during the winter.


1999 ◽  
Vol 81 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Amanda E. Jones ◽  
Michael Stolinski ◽  
Ruth D. Smith ◽  
Jane L. Murphy ◽  
Stephen A. Wootton

The gastrointestinal handling and metabolic disposal of [1-13C]palmitic acid, [1-13C]stearic acid and [1-13C]oleic acid administered within a lipid–casein–glucose–sucrose emulsion were examined in normal healthy women by determining both the amount and nature of the13C label in stool and label excreted on breath as13CO2. The greatest excretion of13C label in stool was in the stearic acid trial (9.2 % of administered dose) whilst comparatively little label was observed in stool in either the palmitic acid (1.2 % of administered dose) or oleic acid (1.9 % of administered dose) trials. In both the palmitic acid and oleic acid trials, all of the label in stool was identified as being present in the form in which it was administered (i.e. [13C]palmitic acid in the palmitic acid trial and [13C]oleic acid in the oleic acid trial). In contrast, only 87 % of the label in the stool in the stearic acid trial was identified as [13C]stearic acid, the remainder was identified as [13C]palmitic acid which may reflect chain shortening of [1-13C]stearic acid within the gastrointestinal tract. Small, but statistically significant, differences were observed in the time course of recovery of13C label on breath over the initial 9 h of the study period (oleic acid = palmitic acid > stearic acid). However, when calculated over the 24 h study period, the recovery of the label as13CO2was similar in all three trials (approximately 25 % of absorbed dose). These results support the view that chain length and degree of unsaturation may influence the gastrointestinal handling and immediate metabolic disposal of these fatty acids even when presented within an emulsion.


Lipids ◽  
1998 ◽  
Vol 33 (8) ◽  
pp. 829-833
Author(s):  
Robert S. Burkhalter ◽  
Carol A. Smith ◽  
David C. White ◽  
Ronald Fayer ◽  
Andrew B. White

Metabolites ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 31 ◽  
Author(s):  
Anuri Shah ◽  
Pei Han ◽  
Mung-Yee Wong ◽  
Raymond Chang ◽  
Cristina Legido-Quigley

Introduction: Parkinson’s disease (PD) is the second most common neurodegenerative disorder, without any widely available curative therapy. Metabolomics is a powerful tool which can be used to identify unexpected pathway-related disease progression and pathophysiological mechanisms. In this study, metabolomics in brain, plasma and liver was investigated in an experimental PD model, to discover small molecules that are associated with dopaminergic cell loss. Methods: Sprague Dawley (SD) rats were injected unilaterally with 6-hydroxydopamine (6-OHDA) or saline for the vehicle control group into the medial forebrain bundle (MFB) to induce loss of dopaminergic neurons in the substantia nigra pars compacta. Plasma, midbrain and liver samples were collected for metabolic profiling. Multivariate and univariate analyses revealed metabolites that were altered in the PD group. Results: In plasma, palmitic acid (q = 3.72 × 10−2, FC = 1.81) and stearic acid (q = 3.84 × 10−2, FC = 2.15), were found to be increased in the PD group. Palmitic acid (q = 3.5 × 10−2) and stearic acid (q = 2.7 × 10−2) correlated with test scores indicative of motor dysfunction. Monopalmitin (q = 4.8 × 10−2, FC = −11.7), monostearin (q = 3.72 × 10−2, FC = −15.1) and myo-inositol (q = 3.81 × 10−2, FC = −3.32), were reduced in the midbrain. The liver did not have altered levels of these molecules. Conclusion: Our results show that saturated free fatty acids, their monoglycerides and myo-inositol metabolism in the midbrain and enteric circulation are associated with 6-OHDA-induced PD pathology.


Sign in / Sign up

Export Citation Format

Share Document