Large Scale-up Monocrystalized 3R MoS2 Electrocatalyst for Efficient Nitrogen Reduction Reaction

2021 ◽  
Author(s):  
Bin Fang ◽  
Junjie Yao ◽  
Xiaojun Zhang ◽  
Liang Ma ◽  
Yaqi Ye ◽  
...  

Electrochemical nitrogen fixation supplies an environment-friendly strategy to produce ammonia (NH3) at ambient conditions. However, exploiting a kind of inexpensive and efficient electrocatalyst for electrocatalytic nitrogen reduction reaction (NRR) under...

2019 ◽  
Vol 7 (24) ◽  
pp. 14462-14465 ◽  
Author(s):  
Tengfei Li ◽  
Xudong Yan ◽  
Lujun Huang ◽  
Jinghan Li ◽  
Lulu Yao ◽  
...  

Due to its fuel-efficient and environmentally friendly nature, the electrocatalytic nitrogen reduction reaction (NRR) has drawn significant attention.


Author(s):  
Wencheng Ouyang ◽  
Qiuming Zhi ◽  
LeLe Gong ◽  
Hao Sun ◽  
Minghui Liu ◽  
...  

Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions has been proposed as a sustainable alternative for nitrogen fixation and ammonia production in environment and renewable energy fields. Carbon-based materials have...


Nanoscale ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 1478-1483 ◽  
Author(s):  
Jia Wang ◽  
Haeseong Jang ◽  
Guangkai Li ◽  
Min Gyu Kim ◽  
Zexing Wu ◽  
...  

NiWO4 was prepared through a facile and large-scale strategy, and exhibited superior electrocatalytic performance, relative to NiO and WO3, for the nitrogen reduction reaction in both acidic and alkaline media at room temperature.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 974
Author(s):  
Bing Han ◽  
Haihong Meng ◽  
Fengyu Li ◽  
Jingxiang Zhao

Under the current double challenge of energy and the environment, an effective nitrogen reduction reaction (NRR) has become a very urgent need. However, the largest production of ammonia gas today is carried out by the Haber–Bosch process, which has many disadvantages, among which energy consumption and air pollution are typical. As the best alternative procedure, electrochemistry has received extensive attention. In this paper, a catalyst loaded with Fe3 clusters on the two-dimensional material C2N (Fe3@C2N) is proposed to achieve effective electrochemical NRR, and our first-principles calculations reveal that the stable Fe3@C2N exhibits excellent catalytic performance for electrochemical nitrogen fixation with a limiting potential of 0.57 eV, while also suppressing the major competing hydrogen evolution reaction. Our findings will open a new door for the development of non-precious single-cluster catalysts for effective nitrogen reduction reactions.


Nanoscale ◽  
2019 ◽  
Vol 11 (21) ◽  
pp. 10439-10445 ◽  
Author(s):  
Xiaolan Xue ◽  
Renpeng Chen ◽  
Changzeng Yan ◽  
Yi Hu ◽  
Wenjun Zhang ◽  
...  

Bi2MoO6/OV-BiOBr heterojunctions are synthesized and show good photocatalytic activities for nitrogen reduction to ammonia under ambient conditions.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhongyuan Guo ◽  
Lakshitha Jasin Arachchige ◽  
Siyao Qiu ◽  
Xiao Li Zhang ◽  
Yongjun Xu ◽  
...  

Photocatalytic nitrogen reduction reaction (NRR) is a promising, green route to chemically reducing N2 into NH3 under ambient conditions, correlating to the N2 fixation process of nitrogenase enzymes. To achieve...


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


Sign in / Sign up

Export Citation Format

Share Document