Ultra-low thermal conductivity and high thermoelectric performance realized in a Cu3SbSe4 based system

2021 ◽  
Vol 5 (1) ◽  
pp. 324-332
Author(s):  
J. M. Li ◽  
H. W. Ming ◽  
B. L. Zhang ◽  
C. J. Song ◽  
L. Wang ◽  
...  

Cu3SbSe4-Based materials were fabricated through Sn-doping and AgSb0.98Ge0.02Se2 incorporation and their thermoelectric properties were investigated in the temperature range from 300 K to 675 K.

2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


2020 ◽  
Vol 1010 ◽  
pp. 327-333
Author(s):  
Abdullah Chik ◽  
Haw Wei Kheng ◽  
Ruhiyuddin Mohd Zaki ◽  
Faizul Che Pa ◽  
Akeem Adekunle Adewale ◽  
...  

The thermoelectric properties of hexagonal SiGe doped with Sn with doping percentage of 12.5% and 25% were investigated using linearised augmented plane wave method using the WIEN2k package and semiclassical Boltztmann Transport equation using the BoltzTraP software for the purpose of understanding the role of Sn as a dopant in the SiGe. For temperature range of 300 to 1000 K, it can be seen that by doping with Sn, there is an improvement in overall thermal conductivity of the samples with the highest improvement is in the 25% doped sample. The conductivity vs temperature for 25% Sn doped SiGe also shows higher value through temperature range from 300 K to 1000 K, however the Seebeck coefficient decreases with Sn doping percentage for the same temperature range. Due to lower Seebeck coefficient and higher thermal conductivity values, the overall thermoelectric coefficient, ZT, of the doped compound is lower than the SiGe values with highest ZT equal to 0.29 and 0.17 at 650 K for 12.5% and 25% respectively while the ZT of simulated SiGe at 650 K is 0.35. Thus 25% Sn doping actually reduce the ZT but enhanced the thermal and electrical conductivity of SiGe for temperature range of 300 to 1000 K.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


Polymer ◽  
2020 ◽  
Vol 206 ◽  
pp. 122912
Author(s):  
Naoya Yanagishima ◽  
Shinji Kanehashi ◽  
Hiromu Saito ◽  
Kenji Ogino ◽  
Takeshi Shimomura

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Hu ◽  
Yue-Wen Fang ◽  
Feiyu Qin ◽  
Xun Cao ◽  
Xiaoxu Zhao ◽  
...  

AbstractThermoelectrics enable waste heat recovery, holding promises in relieving energy and environmental crisis. Lillianite materials have been long-term ignored due to low thermoelectric efficiency. Herein we report the discovery of superior thermoelectric performance in Pb7Bi4Se13 based lillianites, with a peak figure of merit, zT of 1.35 at 800 K and a high average zT of 0.92 (450–800 K). A unique quality factor is established to predict and evaluate thermoelectric performances. It considers both band nonparabolicity and band gaps, commonly negligible in conventional quality factors. Such appealing performance is attributed to the convergence of effectively nested conduction bands, providing a high number of valley degeneracy, and a low thermal conductivity, stemming from large lattice anharmonicity, low-frequency localized Einstein modes and the coexistence of high-density moiré fringes and nanoscale defects. This work rekindles the vision that Pb7Bi4Se13 based lillianites are promising candidates for highly efficient thermoelectric energy conversion.


2011 ◽  
Vol 40 (5) ◽  
pp. 611-614 ◽  
Author(s):  
G. D. Tang ◽  
Z. H. Wang ◽  
X. N. Xu ◽  
Y. He ◽  
L. Qiu ◽  
...  

Author(s):  
Chang'an Li ◽  
Xin Guan ◽  
Shizhong Yue ◽  
Xi Zu Wang ◽  
Jianmin Li ◽  
...  

Thermoelectric polymers have attracted great attention because of their unique merits including low thermal conductivity, low cost, non- or low toxicity and high mechanical flexibility. However, their thermoelectric properties particularly...


2017 ◽  
Vol 5 (36) ◽  
pp. 19406-19415 ◽  
Author(s):  
Robin Lefèvre ◽  
David Berthebaud ◽  
Oleg Lebedev ◽  
Olivier Pérez ◽  
Célia Castro ◽  
...  

A new ternary layered compound In2Ge2Te6, belonging to the hexatellurogermanate family has been synthesized from the reaction of appropriate amounts of the pure elements at high temperature in sealed silica tubes.


Sign in / Sign up

Export Citation Format

Share Document