scholarly journals A quick and versatile one step metal–organic chemical deposition method for supported Pt and Pt-alloy catalysts

RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 19982-19996 ◽  
Author(s):  
Colleen Jackson ◽  
Graham T. Smith ◽  
Nobuhle Mpofu ◽  
Jack M. S. Dawson ◽  
Thulile Khoza ◽  
...  

A simple, modified Metal–Organic Chemical Deposition (MOCD) method for Pt, PtRu and PtCo nanoparticle deposition onto a variety of support materials, including C, SiC, B4C, LaB6, TiB2, TiN and a ceramic/carbon nanofiber, is described.

2003 ◽  
Vol 17 (20n21) ◽  
pp. 1075-1080 ◽  
Author(s):  
Ali Ihsan Demirel

In this work, the temperature dependence of the magnetic relaxation in samples of YBa 2 Cu 3 O 7 (YBCO) thin films of two different qualities grown on MgO by metal organic chemical deposition technique (MOCVD) is measured in the range of 4.2–80 K using an initial applied magnetic field of 0.1 T. The relaxation data are analyzed in terms of a single effective activation energy and then more correctly of a distribution of activation energies. The single activation energies extracted are in broad agreement with published results.


Author(s):  
K.M. Jones ◽  
M.M. Al-Jassim ◽  
J.M. Olson

The epitaxial growth of III-V semiconductors on Si for integrated optoelectronic applications is currently of great interest. GaP, with a lattice constant close to that of Si, is an attractive buffer between Si and, for example, GaAsP. In spite of the good lattice match, the growth of device quality GaP on Si is not without difficulty. The formation of antiphase domains, the difficulty in cleaning the Si substrates prior to growth, and the poor layer morphology are some of the problems encountered. In this work, the structural perfection of GaP layers was investigated as a function of several process variables including growth rate and temperature, and Si substrate orientation. The GaP layers were grown in an atmospheric pressure metal organic chemical vapour deposition (MOCVD) system using trimethylgallium and phosphine in H2. The Si substrates orientations used were (100), 2° off (100) towards (110), (111) and (211).


Author(s):  
J.L. Batstone

The development of growth techniques such as metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy during the last fifteen years has resulted in the growth of high quality epitaxial semiconductor thin films for the semiconductor device industry. The III-V and II-VI semiconductors exhibit a wide range of fundamental band gap energies, enabling the fabrication of sophisticated optoelectronic devices such as lasers and electroluminescent displays. However, the radiative efficiency of such devices is strongly affected by the presence of optically and electrically active defects within the epitaxial layer; thus an understanding of factors influencing the defect densities is required.Extended defects such as dislocations, twins, stacking faults and grain boundaries can occur during epitaxial growth to relieve the misfit strain that builds up. Such defects can nucleate either at surfaces or thin film/substrate interfaces and the growth and nucleation events can be determined by in situ transmission electron microscopy (TEM).


Sign in / Sign up

Export Citation Format

Share Document