scholarly journals Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling

RSC Advances ◽  
2020 ◽  
Vol 10 (54) ◽  
pp. 32548-32560 ◽  
Author(s):  
Salah Abdelrazig ◽  
Laudina Safo ◽  
Graham A. Rance ◽  
Michael W. Fay ◽  
Eirini Theodosiou ◽  
...  

Metabolic pathways in Magnetospirillum gryphiswaldense MSR-1 are significantly altered under microaerobic (O2-limited) growth conditions enabling magnetosome formation.

1988 ◽  
Vol 20 (8-9) ◽  
pp. 125-131 ◽  
Author(s):  
H. Naes ◽  
H. C. Utkilen ◽  
A. F. Post

Environmental factors affecting geosmin production by Oscillatoria brevis have been investigated under laboratory conditions using continuous culture techniques. Transition from light to nutrient limited growth conditions caused a two-fold decrease in geosmin production. However, geosmin content increased relative to pigment content (chlorophyll a and carotenoids). It has been suggested that geosmin biosynthesis in O. brevis proceeds via the isoprenoid pathway as was found in actinomycetes. Accordingly, we investigated the effect of inhibitors of the intermediate stages in this synthetic pathway in order to study the regulation of geosmin production in relation to pigment synthesis. It was concluded that geosmin seemed to function as an overflow metabolite in this pathway. Due to the only modest changes in geosmin production per dry weight compared to changes in biomass levels during light- or nutrient limited growth, contamination of eutrophic fresh waters with geosmin appears to depend mainly on the species present and its biomass level and only to a limited extent on nutrient enhanced synthesis.


2017 ◽  
Vol 114 (37) ◽  
pp. E7796-E7802 ◽  
Author(s):  
Brent Cezairliyan ◽  
Frederick M. Ausubel

Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacteriumPseudomonas aeruginosaduring growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing–dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.


2009 ◽  
Vol 75 (15) ◽  
pp. 5001-5008 ◽  
Author(s):  
Xueyang Feng ◽  
Housna Mouttaki ◽  
Lu Lin ◽  
Rick Huang ◽  
Bing Wu ◽  
...  

ABSTRACT Thermoanaerobacter sp. strain X514 has great potential in biotechnology due to its capacity to ferment a range of C5 and C6 sugars to ethanol and other metabolites under thermophilic conditions. This study investigated the central metabolism of strain X514 via 13C-labeled tracer experiments using either glucose or pyruvate as both carbon and energy sources. X514 grew on minimal medium and thus contains complete biosynthesis pathways for all macromolecule building blocks. Based on genome annotation and isotopic analysis of amino acids, three observations can be obtained about the central metabolic pathways in X514. First, the oxidative pentose phosphate pathway in X514 is not functional, and the tricarboxylic acid cycle is incomplete under fermentative growth conditions. Second, X514 contains (Re)-type citrate synthase activity, although no gene homologous to the recently characterized (Re)-type citrate synthase of Clostridium kluyveri was found. Third, the isoleucine in X514 is derived from acetyl coenzyme A and pyruvate via the citramalate pathway rather than being synthesized from threonine via threonine ammonia-lyase. The functionality of the citramalate synthase gene (cimA [Teth514_1204]) has been confirmed by enzymatic activity assays, while the presence of intracellular citramalate has been detected by mass spectrometry. This study demonstrates the merits of combining 13C-assisted metabolite analysis, enzyme assays, and metabolite detection not only to examine genome sequence annotations but also to discover novel enzyme activities.


2005 ◽  
Vol 71 (5) ◽  
pp. 2391-2402 ◽  
Author(s):  
Maike Silberbach ◽  
Mathias Schäfer ◽  
Andrea T. Hüser ◽  
Jörn Kalinowski ◽  
Alfred Pühler ◽  
...  

ABSTRACT Theresponse of Corynebacterium glutamicum to ammonium limitation was studied by transcriptional and proteome profiling of cells grown in a chemostat. Our results show that ammonium-limited growth of C. glutamicum results in a rearrangement of the cellular transport capacity, changes in metabolic pathways for nitrogen assimilation, amino acid biosynthesis, and carbon metabolism, as well as a decreased cell division. Since transcription at different growth rates was studied, it was possible to distinguish specific responses to ammonium limitation and more general, growth rate-dependent alterations in gene expression. The latter include a number of genes encoding ribosomal proteins and genes for FoF1-ATP synthase subunits.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0138965 ◽  
Author(s):  
Mariusz A. Bromke ◽  
Jamal S. Sabir ◽  
Fahad A. Alfassi ◽  
Nahid H. Hajarah ◽  
Saleh A. Kabli ◽  
...  

2006 ◽  
Vol 72 (9) ◽  
pp. 5757-5765 ◽  
Author(s):  
Sabrina Sch�bbe ◽  
Chris W�rdemann ◽  
J�rg Peplies ◽  
Udo Heyen ◽  
Cathrin Wawer ◽  
...  

ABSTRACT Genes involved in magnetite biomineralization are clustered within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Their transcriptional organization and regulation were studied by several approaches. Cotranscription of genes within the mamAB, mamDC, and mms clusters was demonstrated by reverse transcription-PCR (RT-PCR) of intergenic regions, indicating the presence of long polycistronic transcripts extending over more than 16 kb. The transcription start points of the mamAB, mamDC, and mms operons were mapped at 22 bp, 52 bp, and 58 bp upstream of the first genes of the operons, respectively. Identified −10 and −35 boxes of the P mamAB , P mamDC , and P mms promoters showed high similarity to the canonical σ70 recognition sequence. The transcription of magnetosome genes was further studied in response to iron and oxygen. Transcripts of magnetosome genes were detected by RT-PCR both in magnetic cells grown microaerobically under iron-sufficient conditions and in nonmagnetic cells grown either aerobically or with iron limitation. The presence of transcripts was found to be independent of the growth phase. Further results from partial RNA microarrays targeting the putative magnetosome transcriptome of M. gryphiswaldense and real-time RT-PCR experiments indicated differences in expression levels depending on growth conditions. The expression of the mam and mms genes was down-regulated in nonmagnetic cells under iron limitation and, to a lesser extent, during aerobic growth compared to that in magnetite-forming cells grown microaerobically under iron-sufficient conditions.


Sign in / Sign up

Export Citation Format

Share Document