scholarly journals Collective forces in scalar active matter

Soft Matter ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. 2652-2663 ◽  
Author(s):  
Thomas Speck

Large-scale collective behavior in suspensions of active particles can be understood from the balance of statistical forces emerging beyond the direct microscopic particle interactions.

2020 ◽  
Vol 117 (22) ◽  
pp. 11901-11907 ◽  
Author(s):  
Peng Liu ◽  
Hongwei Zhu ◽  
Ying Zeng ◽  
Guangle Du ◽  
Luhui Ning ◽  
...  

Due to its inherent out-of-equilibrium nature, active matter in confinement may exhibit collective behavior absent in unconfined systems. Extensive studies have indicated that hydrodynamic or steric interactions between active particles and boundary play an important role in the emergence of collective behavior. However, besides introducing external couplings at the single-particle level, the confinement also induces an inhomogeneous density distribution due to particle-position correlations, whose effect on collective behavior remains unclear. Here, we investigate this effect in a minimal chiral active matter composed of self-spinning rotors through simulation, experiment, and theory. We find that the density inhomogeneity leads to a position-dependent frictional stress that results from interrotor friction and couples the spin to the translation of the particles, which can then drive a striking spatially oscillating collective motion of the chiral active matter along the confinement boundary. Moreover, depending on the oscillation properties, the collective behavior has three different modes as the packing fraction varies. The structural origins of the transitions between the different modes are well identified by the percolation of solid-like regions or the occurrence of defect-induced particle rearrangement. Our results thus show that the confinement-induced inhomogeneity, dynamic structure, and compressibility have significant influences on collective behavior of active matter and should be properly taken into account.


2021 ◽  
Author(s):  
Gasper Kokot ◽  
Hammad Faizi ◽  
Gerardo Pradillo ◽  
Alexey Snezhko ◽  
Petia Vlahovska

Abstract Active particles, such as swimming bacteria or self-propelled colloids, spontaneously assemble into large-scale dynamic structures. Geometric boundaries often enforce different spatio-temporal patterns compared to unconfined environment and thus provide a platform to control the behavior of active matter. Here, we report collective dynamics of active particles enclosed by soft, deformable boundaries, that is responsive to the particles' activity. We reveal that a fluid droplet enclosing motile colloids powered by the Quincke effect (Quincke rollers) exhibits strong shape fluctuations, and while the rollers do self-organize into a single vortex, it fills the droplet interior. We demonstrate that the shape fluctuations have a power spectrum consistent with active fluctuations driven by particle-interface collisions, and a broken detailed balance confirms the nonequilibrium nature of the shape dynamics. We further find that the rollers activity coupled to soft boundary fluctuations can result in a spontaneous symmetry breaking and vortex splitting. The droplet acquires motility while the vortex doublet exists. Our findings provide insights into the complex collective behavior of active colloidal suspensions in soft confinement.


2015 ◽  
Vol 51 (91) ◽  
pp. 16381-16384 ◽  
Author(s):  
Yuelong Xin ◽  
Liya Qi ◽  
Yiwei Zhang ◽  
Zicheng Zuo ◽  
Henghui Zhou ◽  
...  

A novel organic solvent-assisted freeze-drying pathway, which can effectively protect and uniformly distribute active particles, is developed to fabricate a free-standing Li2MnO3·LiNi1/3Co1/3Mn1/3O2 (LR)/rGO electrode on a large scale.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 991
Author(s):  
Peidong Zhu ◽  
Peng Xun ◽  
Yifan Hu ◽  
Yinqiao Xiong

A large-scale Cyber-Physical System (CPS) such as a smart grid usually provides service to a vast number of users as a public utility. Security is one of the most vital aspects in such critical infrastructures. The existing CPS security usually considers the attack from the information domain to the physical domain, such as injecting false data to damage sensing. Social Collective Attack on CPS (SCAC) is proposed as a new kind of attack that intrudes into the social domain and manipulates the collective behavior of social users to disrupt the physical subsystem. To provide a systematic description framework for such threats, we extend MITRE ATT&CK, the most used cyber adversary behavior modeling framework, to cover social, cyber, and physical domains. We discuss how the disinformation may be constructed and eventually leads to physical system malfunction through the social-cyber-physical interfaces, and we analyze how the adversaries launch disinformation attacks to better manipulate collective behavior. Finally, simulation analysis of SCAC in a smart grid is provided to demonstrate the possibility of such an attack.


Soft Matter ◽  
2021 ◽  
Author(s):  
Claudio Maggi ◽  
Matteo Paoluzzi ◽  
Andrea Crisanti ◽  
Emanuela Zaccarelli ◽  
Nicoletta Gnan

We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles undergoing a motility-induced phase separation (MIPS) to investigate the systems critical behaviour close to the critical point...


Soft Matter ◽  
2019 ◽  
Vol 15 (44) ◽  
pp. 8946-8950 ◽  
Author(s):  
Daphne Klotsa

What is the collective behavior of mesoscopic (size ≈ 0.5 mm–50 cm) organisms/robots that swim or fly, such as plankton and small insects? In this perspective article we discuss the importance of studying active matter in fluids with finite inertia.


Author(s):  
Pulak Kumar Ghosh ◽  
Fabio Marchesoni ◽  
Yunyun Li ◽  
Franco Nori

Undesired advection effects are unavoidable in most nano-technological applications involving active matter. However, it is conceivable to govern the transport of active particles at the small scales by suitably tuning...


2019 ◽  
Vol 116 (45) ◽  
pp. 22464-22470 ◽  
Author(s):  
Anis Senoussi ◽  
Shunnichi Kashida ◽  
Raphael Voituriez ◽  
Jean-Christophe Galas ◽  
Ananyo Maitra ◽  
...  

Active matter locally converts chemical energy into mechanical work and, for this reason, it provides new mechanisms of pattern formation. In particular, active nematic fluids made of protein motors and filaments are far-from-equilibrium systems that may exhibit spontaneous motion, leading to actively driven spatiotemporally chaotic states in 2 and 3 dimensions and coherent flows in 3 dimensions (3D). Although these dynamic flows reveal a characteristic length scale resulting from the interplay between active forcing and passive restoring forces, the observation of static and large-scale spatial patterns in active nematic fluids has remained elusive. In this work, we demonstrate that a 3D solution of kinesin motors and microtubule filaments spontaneously forms a 2D free-standing nematic active sheet that actively buckles out of plane into a centimeter-sized periodic corrugated sheet that is stable for several days at low activity. Importantly, the nematic orientational field does not display topological defects in the corrugated state and the wavelength and stability of the corrugations are controlled by the motor concentration, in agreement with a hydrodynamic theory. At higher activities these patterns are transient and chaotic flows are observed at longer times. Our results underline the importance of both passive and active forces in shaping active matter and demonstrate that a spontaneously flowing active fluid can be sculpted into a static material through an active mechanism.


2020 ◽  
Vol 11 (1) ◽  
pp. 189-212 ◽  
Author(s):  
Hugues Chaté

Active matter physics is about systems in which energy is dissipated at some local level to produce work. This is a generic situation, particularly in the living world but not only. What is at stake is the understanding of the fascinating, sometimes counterintuitive, emerging phenomena observed, from collective motion in animal groups to in vitro dynamical self-organization of motor proteins and biofilaments. Dry aligning dilute active matter (DADAM) is a corner of the multidimensional, fast-growing domain of active matter that has both historical and theoretical importance for the entire field. This restrictive setting only involves self-propulsion/activity, alignment, and noise, yet unexpected collective properties can emerge from it. This review provides a personal but synthetic and coherent overview of DADAM, focusing on the collective-level phenomenology of simple active particle models representing basic classes of systems and on the solutions of the continuous hydrodynamic theories that can be derived from them. The obvious fact that orientational order is advected by the aligning active particles at play is shown to be at the root of the most striking properties of DADAM systems: ( a) direct transitions to orientational order are not observed; ( b) instead generic phase separation occurs with a coexistence phase involving inhomogeneous nonlinear structures; ( c) orientational order, which can be long range even in two dimensions, is accompanied by long-range correlations and anomalous fluctuations; ( d) defects are not point-like, topologically bound objects.


2019 ◽  
Vol 122 (21) ◽  
Author(s):  
Moritz Linkmann ◽  
Guido Boffetta ◽  
M. Cristina Marchetti ◽  
Bruno Eckhardt

Sign in / Sign up

Export Citation Format

Share Document