State-of-the-art surface oxide semiconductors of liquid metals: an emerging platform for development of multifunctional two-dimensional materials

2021 ◽  
Vol 9 (1) ◽  
pp. 34-73
Author(s):  
Mohamamd Karbalaei Akbari ◽  
Francis Verpoort ◽  
Serge Zhuiykov

Two-dimensional (2D) surface oxide films of post-transition liquid metals and their alloys have been recently introduced as an emerging category of ultra-thin functional semiconductor materials with fascinating physico-chemical and structural characteristics.

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Pavana Siddhartha Kollipara ◽  
Jingang Li ◽  
Yuebing Zheng

Recent advances in the field of two-dimensional (2D) materials have led to new electronic and photonic devices enabled by their unique properties at atomic thickness. Structuring 2D materials into desired patterns on substrates is often an essential and foremost step for the optimum performance of the functional devices. In this regard, optical patterning of 2D materials has received enormous interest due to its advantages of high-throughput, site-specific, and on-demand fabrication. Recent years have witnessed scientific reports of a variety of optical techniques applicable to patterning 2D materials. In this minireview, we present the state-of-the-art optical patterning of 2D materials, including laser thinning, doping, phase transition, oxidation, and ablation. Several applications based on optically patterned 2D materials will be discussed as well. With further developments, optical patterning is expected to hold the key in pushing the frontiers of manufacturing and applications of 2D materials.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4651
Author(s):  
Guangyu Du ◽  
Xiaozhi Bao ◽  
Shenghuang Lin ◽  
Huan Pang ◽  
Shivananju Bannur Nanjunda ◽  
...  

In recent years, polaritons in two-dimensional (2D) materials have gained intensive research interests and significant progress due to their extraordinary properties of light-confinement, tunable carrier concentrations by gating and low loss absorption that leads to long polariton lifetimes. With additional advantages of biocompatibility, label-free, chemical identification of biomolecules through their vibrational fingerprints, graphene and related 2D materials can be adapted as excellent platforms for future polaritonic biosensor applications. Extreme spatial light confinement in 2D materials based polaritons supports atto-molar concentration or single molecule detection. In this article, we will review the state-of-the-art infrared polaritonic-based biosensors. We first discuss the concept of polaritons, then the biosensing properties of polaritons on various 2D materials, then lastly the impending applications and future opportunities of infrared polaritonic biosensors for medical and healthcare applications.


2020 ◽  
Vol 229 (17-18) ◽  
pp. 2863-2879
Author(s):  
Jon Otto Fossum

AbstractClays are the siblings of graphite and graphene/graphene-oxide. There are two basic ways of using clays for encapsulation of sub-micron entities such as molecules, droplets, or nanoparticles, which is either by encapsulation in the interlayer space of clay nanolayered stacked particles (“the graphite way”), or by using exfoliated clay nanolayers to wrap entities in packages (“the graphene way”). Clays maybe the prerequisites for life on earth and can also be linked to the natural formation of other two-dimensional materials such as naturally occurring graphite and its allotropes. Here we discuss state-of-the-art in the area of clay-based encapsulation and point to some future scientific directions and technological possibilities that could emerge from research in this area.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Anha Bhat ◽  
Shoaib Anwer ◽  
Kiesar Sideeq Bhat ◽  
M. Infas H. Mohideen ◽  
Kin Liao ◽  
...  

AbstractTwo-dimensional materials have gained immense attention for technological applications owing to their characteristic properties. MXene is one of the fast-growing family of 2D materials that exhibits remarkable physiochemical properties that cater numerous applications in the field of energy and storage. This review comprises the significant advancement in the field of 2D MXene and discusses the evolution of the design, synthetic strategies, and stability. In addition to illuminating the state-of-the-art applications, we discuss the challenges and limitations that preclude the scientific fraternity from realizing functional MXene with controlled structures and properties for renewable clean energy conversion and storage applications.


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Sign in / Sign up

Export Citation Format

Share Document