An enhanced fluorescent probe through the strategy of MgWO4 nanosheets to enhance terbium ion luminescence for highly sensitive and point-of-care visual quantitative testing of ciprofloxacin integrated with a low-cost smartphone-based platform

The Analyst ◽  
2021 ◽  
Author(s):  
Jingfei Zhang ◽  
Guoyue Shi ◽  
Yu Zhang

In this work, MgWO4 nanosheets have successfully been synthesized by a simple hydrothermal method, and the morphology and composition of MgWO4 nanosheets are characterized by SEM, TEM, XPS, UV-vis. The...

RSC Advances ◽  
2014 ◽  
Vol 4 (87) ◽  
pp. 46437-46443 ◽  
Author(s):  
Hao Li ◽  
Juan Liu ◽  
Manman Yang ◽  
Weiqian Kong ◽  
Hui Huang ◽  
...  

The carbon dots/tyrosinase hybrid as a low-cost fluorescent probe for the detection of dopamine exhibits high sensitivity, stability, and precision.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2821 ◽  
Author(s):  
Jhonattan C. Ramirez ◽  
Lucas H. Gabrielli ◽  
Laura M. Lechuga ◽  
Hugo E. Hernandez-Figueroa

This work implements and demonstrates an interferometric transducer based on a trimodal optical waveguide concept. The readout signal is generated from the interference between the fundamental and second-order modes propagating on a straight polymer waveguide. Intuitively, the higher the mode order, the larger the fraction of power (evanescent field) propagating outside the waveguide core, hence the higher the sensitivity that can be achieved when interfering against the strongly confined fundamental mode. The device is fabricated using the polymer SU-8 over a SiO2 substrate and shows a free spectral range of 20.2 nm and signal visibility of 5.7 dB, reaching a sensitivity to temperature variations of 0.0586 dB/ ∘ C. The results indicate that the proposed interferometer is a promising candidate for highly sensitive, compact and low-cost photonic transducer for implementation in different types of sensing applications, among these, point-of-care.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 1051-1059 ◽  
Author(s):  
Andrew S. Paterson ◽  
Balakrishnan Raja ◽  
Vinay Mandadi ◽  
Blane Townsend ◽  
Miles Lee ◽  
...  

Time-gated imaging on a smartphone of a lateral flow test strip run with persistent luminescent nanophosphors.


2021 ◽  
Vol 7 (32) ◽  
pp. eabh2944
Author(s):  
Helena de Puig ◽  
Rose A. Lee ◽  
Devora Najjar ◽  
Xiao Tan ◽  
Luis R. Soekensen ◽  
...  

The COVID-19 pandemic highlights the need for diagnostics that can be rapidly adapted and deployed in a variety of settings. Several SARS-CoV-2 variants have shown worrisome effects on vaccine and treatment efficacy, but no current point-of-care (POC) testing modality allows their specific identification. We have developed miSHERLOCK, a low-cost, CRISPR-based POC diagnostic platform that takes unprocessed patient saliva; extracts, purifies, and concentrates viral RNA; performs amplification and detection reactions; and provides fluorescent visual output with only three user actions and 1 hour from sample input to answer out. miSHERLOCK achieves highly sensitive multiplexed detection of SARS-CoV-2 and mutations associated with variants B.1.1.7, B.1.351, and P.1. Our modular system enables easy exchange of assays to address diverse user needs and can be rapidly reconfigured to detect different viruses and variants of concern. An adjunctive smartphone application enables output quantification, automated interpretation, and the possibility of remote, distributed result reporting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marva Seifert ◽  
Eva Vargas ◽  
Victor Ruiz-Valdepeñas Montiel ◽  
Joseph Wang ◽  
Timothy C. Rodwell ◽  
...  

AbstractOutside of the ongoing COVID-19 pandemic, tuberculosis is the leading cause of infectious disease mortality globally. Currently, there is no commercially available point-of-care diagnostic that is rapid, inexpensive, and highly sensitive for the diagnosis of active tuberculosis disease. Here we describe the development and optimization of a novel, highly sensitive prototype bioelectronic tuberculosis antigen (BETA) assay to detect tuberculosis-specific antigen, CFP10, in small-volume serum and urine samples. In this proof-of-concept study we evaluated the performance of the BETA assay using clinical specimens collected from presumptive tuberculosis patients from three independent cohorts. Circulating CFP10 antigen was detected in ALL serum (n = 19) and urine (n = 3) samples from bacteriologically confirmed tuberculosis patients who were untreated or had less than one week of treatment at time of serum collection, successfully identifying all culture positive tuberculosis patients. No CFP10 antigen was detected in serum (n = 7) or urine (n = 6) samples from individuals who were determined to be negative for tuberculosis disease. Additionally, antigen quantification using the BETA assay of paired serum samples collected from tuberculosis patients (n = 8) both before and after treatment initiation, indicate consistently declining within-person levels of CFP10 antigen during treatment. This novel, low-cost assay demonstrates potential as a rapid, non-sputum-based, point-of-care tool for the diagnosis of tuberculosis disease.


Author(s):  
Shan Wei ◽  
Esther Kohl ◽  
Alexandre Djandji ◽  
Stephanie Morgan ◽  
Susan Whittier ◽  
...  

AbstractThe COVID-19 pandemic has resulted in an urgent global need for rapid, point-of-care diagnostic testing. Existing methods for nucleic acid amplification testing (NAAT) require an RNA extraction step prior to amplification of the viral RNA. This step necessitates the use of a centralized laboratory or complex and costly proprietary cartridges and equipment, and thereby prevents low-cost, scalable, point-of-care testing. We report the development of a highly sensitive and robust, easy-to-implement, SARS-CoV-2 test that utilizes isothermal amplification and can be run directly on viral transport media following a nasopharyngeal swab without the need for prior RNA extraction. Our assay provides visual results in 30 min with 85% sensitivity, 100% specificity, and a limit of detection (LoD) of 2.5 copies/μl, and can be run using a simple heat block.


2020 ◽  
Vol 56 (63) ◽  
pp. 8968-8971 ◽  
Author(s):  
Ping Zhou ◽  
Fei Lu ◽  
Jianbo Wang ◽  
Kaiye Wang ◽  
Bo Liu ◽  
...  

A low-cost, easy-to-operate, highly sensitive and effective lung cancer diagnostic kit (LCDK) was developed, and can realize non-invasive detection of early-, middle- and late-stage lung cancers using clinical salivary and urine samples.


The Analyst ◽  
2020 ◽  
Vol 145 (9) ◽  
pp. 3283-3288 ◽  
Author(s):  
Juan Li ◽  
Huifang Shen ◽  
Suhua Yu ◽  
Geshan Zhang ◽  
Chuanli Ren ◽  
...  

A novel manganese dioxide nanorod-anchored graphene oxide (MnO2 NRs/GO) composite was synthesized by a simple hydrothermal method for the development of a highly sensitive electrochemical sensor for dopamine.


Sign in / Sign up

Export Citation Format

Share Document