diagnose lung cancer
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhen Ye ◽  
Huanhuan Zhang ◽  
Fanhua Kong ◽  
Jing Lan ◽  
Shuying Yi ◽  
...  

Background. Mitochondria are the energy factories of cells. The abnormality of mitochondrial energy metabolism pathways is closely related to the occurrence and development of lung cancer. The abnormal genes in mitochondrial energy metabolism pathways might be the novel targets and biomarkers to diagnose and treat lung cancers. Method. Genes in major mitochondrial energy metabolism pathways were obtained from the KEGG database. The transcriptomic, mutation, and clinical data of lung cancers were obtained from The Cancer Genome Atlas (TCGA) database. Genes and clinical biomarkers were mined that affected lung cancer survival. Gene enrichment analysis was performed with ClusterProfiler and the gene set enrichment analysis (GSEA). STRING database and Cytoscape were used for protein-protein interaction (PPI) analysis. The diagnostic biomarker pattern of lung cancer was optimized, and its accuracy was verified with 10-fold cross-validation. The four genes screened by logistic regression model were verified by western blot in 5 pairs of lung cancer specimens collected in hospital. Results. In total, 188 mitochondrial energy metabolism pathway-related genes (MMRGs) were included in this study. GSEA analysis found that MMRGs in the lung cancer group were mainly enriched in the metabolic pathway of oxidative phosphorylation and electron respiratory transport chain compared to the control group. Age did not affect the mutation frequency of MMRGs. Comparative analysis of these 188 MMRGs identified 43 differentially expressed MMRGs (24 upregulated and 19 downregulated) in the lung cancer group compared to the control group. The survival analysis of these 43 differentially expressed MMRGs found that the survival time was better in the low-expressed GAPDHS group than that in the high-expressed GAPDHS group of lung cancers. The advanced age, high expression of GAPDHS, low expressions of ACSBG1 and CYP4A11, and ACOX3 mutation were biomarkers of poor prognosis in lung cancers. PPI analysis showed that proteins such as GAPDH and GAPDHS interacted with many proteins in mitochondrial metabolic pathways. A four-MMRG-signature model ( y = 0.0069 ∗ ACADL − 0.001 ∗ ALDH 18 A 1 − 0.0405 ∗ CPT 1 B + 0.0008 ∗ PPARG − 1.625 ) was established to diagnose lung cancer with the accuracy up to 98.74%, AUC value up to 0.992, and a missed diagnosis rate of only 0.6%. Western blotting showed that ALDH18A1 and CPT1B proteins were significantly overexpressed in the lung cancer group ( p < 0.05 ), and ACADL and PPARG proteins were slightly underexpressed in the lung cancer group ( p < 0.05 ), which were consistent with the results of their corresponding mRNA expressions. Conclusion. Mitochondrial energy metabolism pathway alterations are the important hallmarks of lung cancer. Age did not increase the risk of MMRG mutation. High expression of GAPDHS, low expression of ACSBG1, low expression of CYP4A11, mutated ACOX3, and old age predict a poor prognosis of lung cancer. Four differentially expressed MMRGs (ACADL, ALDH18A1, CPT1B, and PPARG) established a logistic regression model, which could effectively diagnose lung cancer. At the protein level, ALDH18A1 and CPT1B were significantly upregulated, and ACADL and PPARG were slightly underexpressed, in the lung cancer group compared to the control group, which were consistent with the results of their corresponding mRNA expressions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Li ◽  
Tienan Feng ◽  
Weituo Zhang ◽  
Sumeng Gao ◽  
Ruoyang Wang ◽  
...  

Background. Lung cancer is one of the leading diagnosed cancers worldwide, and microRNAs could be used as biomarkers to diagnose lung cancer. hsa-miR-195 has been demonstrated to affect the prognosis of NSCLC (non-small-cell lung cancer) in a previous study. However, the diagnostic value of hsa-miR-195-5p in lung cancer has not been investigated. Methods. To evaluate the ability of hsa-miR-195-5p to diagnose lung cancer, we compared the expression of hsa-miR-195-5p in lung cancer patients, COPD patients, and normal controls. Receiver operating characteristic (ROC) curve analysis was performed to investigate the sensitivity and specificity of hsa-miR-195-5p. Coexpression network and pathway analysis were carried out to explore the mechanism. Results. We found that hsa-miR-195-5p had lower expression in lung cancer and COPD patients than in normal controls, and the AUC was 0.92 for diagnosing lung cancer. hsa-miR-143 correlated with hsa-miR-195-5p, and by combining these two microRNAs, the AUC was 0.97 for diagnosing lung cancer. Conclusions. hsa-miR-195-5p may act as a biomarker that contributes to the diagnosis of lung cancer and the detection of its high-risk population.


2020 ◽  
Vol 56 (63) ◽  
pp. 8968-8971 ◽  
Author(s):  
Ping Zhou ◽  
Fei Lu ◽  
Jianbo Wang ◽  
Kaiye Wang ◽  
Bo Liu ◽  
...  

A low-cost, easy-to-operate, highly sensitive and effective lung cancer diagnostic kit (LCDK) was developed, and can realize non-invasive detection of early-, middle- and late-stage lung cancers using clinical salivary and urine samples.


2018 ◽  
Vol 10 ◽  
pp. 1179299X1875929 ◽  
Author(s):  
Jian Su ◽  
Qixin Leng ◽  
Yanli Lin ◽  
Jie Ma ◽  
Fangran Jiang ◽  
...  

We have demonstrated that assessments of microRNA (miRNA) expressions in circulating peripheral blood mononucleated cell (PBMC) and sputum specimens, respectively, may help diagnose lung cancer. To assess the individual and combined analysis of the miRNAs across the different body fluids for lung cancer early detection, we analyse a panel of 3 sputum miRNAs (miRs-21, 31, and 210) and a panel of 2 PBMC miRNAs (miRs-19b-3p and 29b-3p) in a discovery cohort of 68 patients with lung cancer and 66 cancer-free smokers. We find that integrating 2 sputum miRNAs (miRs-31 and 210) and 1 PBMC miRNA (miR-19b-3p) has higher sensitivity (86.8%) and specificity (92.4%) compared with the individual panels. The synergistic value of the integrated panel of 3 biomarkers is confirmed in a validation cohort, independent of stage and histological type of lung cancer, and patients’ age, sex, and ethnicity. Integrating circulating immunological and sputum biomarkers could improve the early detection of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document