Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance

2021 ◽  
Author(s):  
Elanna B. Stephenson ◽  
Katherine S. Elvira

We present a microfluidic platform that enables the formation of bespoke asymmetric droplet interface bilayers (DIBs) as artificial cell models from naturally-derived lipids. We use them to perform pharmacokinetic assays...

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1680 ◽  
Author(s):  
Ibon Santiago ◽  
Friedrich C. Simmel

Reconstitution of life-like properties in artificial cells is a current research frontier in synthetic biology. Mimicking metabolism, growth, and sensing are active areas of investigation; however, achieving motility and directional taxis are also challenging in the context of artificial cells. To tackle this problem, recent progress has been made that leverages the tools of active matter physics in synthetic biology. This review surveys the most significant achievements in designing motile cell-like compartments. In this context, strategies for self-propulsion are summarized, including, compartmentalization of catalytically active particles, phoretic propulsion of vesicles and emulsion droplet motion driven by Marangoni flows. This work showcases how the realization of motile protocells may impact biomedical engineering while also aiming at answering fundamental questions in locomotion of prebiotic cells.


1986 ◽  
Vol 9 (5) ◽  
pp. 285-288 ◽  
Author(s):  
T.M.S. Chang

The author reviewed artificial cells and their applications in hemoperfusion for chronic renal failure, poisoning, fulminant hepatic failure, removal of aluminium and iron, and metabolic assists. Other areas reviewed included artificial cells containing enzymes, multienzymes, immunosorbents, cell cultures and other areas. Artificial cells can be formed as membrane coated adsorbent or microencapsulated adsorbent, enzymes and cells (1-3). The large surface to volume relationship and the ultrathin membrane of artificial cells allows the rapid equilibration of metabolites (1-3). Artificial cells containing enzymes, ion exchange resin and activated charcoal have been used for hemoperfusion (4). The microencapsulated or membrane coated absorbents, enzymes, cells, immunosorbents and other material are prevented from releasing unwanted material into the circulation and prevented from adverse effects on blood cells. Because of the problem of charcoal in releasing emboli and depleting platelets (5) we first developed coated activated charcoal hemoperfusion for clinical application (6, 7). This has been used extensively in clinical studies. The artificial cell approach has also been applied to a number of other hemoperfusion approaches. The lack of space only allows this paper to summarize some of the approaches originated from this research centre.


2015 ◽  
Vol 17 (24) ◽  
pp. 15534-15537 ◽  
Author(s):  
Yuval Elani ◽  
Robert V. Law ◽  
Oscar Ces

Spatially segregated in vitro protein expression in a vesicle-based artificial cell, with different proteins synthesised in defined vesicle regions.


ChemBioChem ◽  
2012 ◽  
Vol 13 (6) ◽  
pp. 792-795 ◽  
Author(s):  
Chiara Martino ◽  
Louise Horsfall ◽  
Yan Chen ◽  
Mayuree Chanasakulniyom ◽  
David Paterson ◽  
...  

2021 ◽  
Author(s):  
Boyu Yang ◽  
Shubin Li ◽  
Wei Mu ◽  
Zhao Wang ◽  
Xiaojun Han

AbstractThe bottom-up constructed artificial cells help to understand the cell working mechanism and provide the evolution clues for organisms. Cyanobacteria are believed to be the ancestors of chloroplasts according to endosymbiosis theory. Herein we demonstrate an artificial cell containing cyanobacteria to mimic endosymbiosis phenomenon. The cyanobacteria sustainably produce glucose molecules by converting light energy into chemical energy. Two downstream “metabolic” pathways starting from glucose molecules are investigated. One involves enzyme cascade reaction to produce H2O2 (assisted by glucose oxidase) first, followed by converting Amplex red to resorufin (assisted by horseradish peroxidase). The more biological one involves nicotinamide adenine dinucleotide (NADH) production in the presence of NAD+ and glucose dehydrogenase. Further, NADH molecules are oxidized into NAD+ by pyruvate catalyzed by lactate dehydrogenase, meanwhile, lactate is obtained. Therefore, the sustainable cascade cycling of NADH/NAD+ is built. The artificial cells built here simulate the endosymbiosis phenomenon, meanwhile pave the way for investigating more complicated sustainable energy supplied metabolism inside artificial cells.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 559 ◽  
Author(s):  
Koki Kamiya

Giant lipid vesicles or liposomes are primarily composed of phospholipids and form a lipid bilayer structurally similar to that of the cell membrane. These vesicles, like living cells, are 5–100 μm in diameter and can be easily observed using an optical microscope. As their biophysical and biochemical properties are similar to those of the cell membrane, they serve as model cell membranes for the investigation of the biophysical or biochemical properties of the lipid bilayer, as well as its dynamics and structure. Investigation of membrane protein functions and enzyme reactions has revealed the presence of soluble or membrane proteins integrated in the giant lipid vesicles. Recent developments in microfluidic technologies and synthetic biology have enabled the development of well-defined artificial cell models with complex reactions based on the giant lipid vesicles. In this review, using microfluidics, the formations of giant lipid vesicles with asymmetric lipid membranes or complex structures have been described. Subsequently, the roles of these biomaterials in the creation of artificial cell models including nanopores, ion channels, and other membrane and soluble proteins have been discussed. Finally, the complex biological functions of giant lipid vesicles reconstituted with various types of biomolecules has been communicated. These complex artificial cell models contribute to the production of minimal cells or protocells for generating valuable or rare biomolecules and communicating between living cells and artificial cell models.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 216 ◽  
Author(s):  
Yusuke Sato ◽  
Masahiro Takinoue

The creation of artificial cells is an immensely challenging task in science. Artificial cells contribute to revealing the mechanisms of biological systems and deepening our understanding of them. The progress of versatile biological research fields has clarified many biological phenomena, and various artificial cell models have been proposed in these fields. Microfluidics provides useful technologies for the study of artificial cells because it allows the fabrication of cell-like compartments, including water-in-oil emulsions and giant unilamellar vesicles. Furthermore, microfluidics also allows the mimicry of cellular functions with chip devices based on sophisticated chamber design. In this review, we describe contributions of microfluidics to the study of artificial cells. Although typical microfluidic methods are useful for the creation of artificial-cell compartments, recent methods provide further benefits, including low-cost fabrication and a reduction of the sample volume. Microfluidics also allows us to create multi-compartments, compartments with artificial organelles, and on-chip artificial cells. We discuss these topics and the future perspective of microfluidics for the study of artificial cells and molecular robotics.


Author(s):  
Huong Thanh Nguyen ◽  
Sungwoo Lee ◽  
Kwanwoo Shin

In recent years, researchers have been pursuing a method to design and to construct life forms from scratch — in other words, to create artificial cells. In many studies, artificial cellular membranes have been successfully fabricated, allowing the research field to grow by leaps and bounds. Moreover, in addition to lipid bilayer membranes, proteins are essential factors required to construct any cellular metabolic reaction; for that reason, different cell-free expression systems under various conditions to achieve the goal of controlling the synthetic cascades of proteins in a confined area have been reported. Thus, in this review, we will discuss recent issues and strategies, enabling to control protein synthesis cascades that are being used, particularly in research on artificial cells.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 606 ◽  
Author(s):  
Muneyuki Matsuo ◽  
Yuiko Hirata ◽  
Kensuke Kurihara ◽  
Taro Toyota ◽  
Toru Miura ◽  
...  

As a supramolecular micromachine with information flow, a giant vesicle (GV)-based artificial cell that exhibits a linked proliferation between GV reproduction and internal DNA amplification has been explored in this study. The linked proliferation is controlled by a complex consisting of GV membrane-intruded DNA with acidic amphiphilic catalysts, working overall as a lipo-deoxyribozyme. Here, we investigated how a GV-based artificial cell containing this lipo-deoxyribozyme responds to diverse external and internal environments, changing its proliferative dynamics. We observed morphological changes (phenotypic expression) in GVs induced by the addition of membrane precursors with different intervals of addition (starvation periods). First, we focused on a new phenotype, the “multiple tubulated” form, which emerged after a long starvation period. Compared to other forms, the multiple tubulated form is characterized by a larger membrane surface with a heavily cationic charge. A second consideration is the effect of the chain length of encapsulated DNA on competitive proliferation. The competitive proliferation among three different species of artificial cells containing different lengths of DNA was investigated. The results clearly showed a distinct intervention in the proliferation dynamics of the artificial cells with each other. In this sense, our GV-based artificial cell can be regarded as an intelligent supramolecular machine responding to external and internal environments, providing a new concept for developing molecular machines and robotics.


2005 ◽  
Vol 2005 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Satya Prakash ◽  
Mitchell Lawrence Jones

There has been rapid growth in research regarding the use of live bacterial cells for therapeutic purposes. The recognition that these cells can be genetically engineered to synthesize products that have therapeutic potential has generated considerable interest and excitement among clinicians and health professionals. It is expected that a wide range of disease modifying substrates such as enzymes, hormones, antibodies, vaccines, and other genetic products will be used successfully and will impact upon health care substantially. However, a major limitation in the use of these bacterial cells is the complexity of delivering them to the correct target tissues. Oral delivery of live cells, lyophilized cells, and immobilized cells has been attempted but with limited success. Primarily, this is because bacterial cells are incapable of surviving passage through the gastrointestinal tract. In many occasions, when given orally, these cells have been found to provoke immunogenic responses that are undesirable. Recent studies show that these problems can be overcome by delivering live bacterial cells, such as genetically engineered cells, using artificial cell microcapsules. This review summarizes recent advances in the therapeutic use of live bacterial cells for therapy, discusses the principles of using artificial cells for the oral delivery of bacterial cells, outlines methods for preparing suitable artificial cells for this purpose, addresses potentials and limitations for their application in therapy, and provides insight for the future direction of this emergent and highly prospective technology.


Sign in / Sign up

Export Citation Format

Share Document