scholarly journals Self-Propulsion Strategies for Artificial Cell-Like Compartments

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1680 ◽  
Author(s):  
Ibon Santiago ◽  
Friedrich C. Simmel

Reconstitution of life-like properties in artificial cells is a current research frontier in synthetic biology. Mimicking metabolism, growth, and sensing are active areas of investigation; however, achieving motility and directional taxis are also challenging in the context of artificial cells. To tackle this problem, recent progress has been made that leverages the tools of active matter physics in synthetic biology. This review surveys the most significant achievements in designing motile cell-like compartments. In this context, strategies for self-propulsion are summarized, including, compartmentalization of catalytically active particles, phoretic propulsion of vesicles and emulsion droplet motion driven by Marangoni flows. This work showcases how the realization of motile protocells may impact biomedical engineering while also aiming at answering fundamental questions in locomotion of prebiotic cells.

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 299 ◽  
Author(s):  
Supramaniam ◽  
Ces ◽  
Salehi-Reyhani

Synthetic biology is a rapidly growing multidisciplinary branch of science that exploits the advancement of molecular and cellular biology. Conventional modification of pre-existing cells is referred to as the top-down approach. Bottom-up synthetic biology is an emerging complementary branch that seeks to construct artificial cells from natural or synthetic components. One of the aims in bottom-up synthetic biology is to construct or mimic the complex pathways present in living cells. The recent, and rapidly growing, application of microfluidics in the field is driven by the central tenet of the bottom-up approach—the pursuit of controllably generating artificial cells with precisely defined parameters, in terms of molecular and geometrical composition. In this review we survey conventional methods of artificial cell synthesis and their limitations. We proceed to show how microfluidic approaches have been pivotal in overcoming these limitations and ushering in a new generation of complexity that may be imbued in artificial cells and the milieu of applications that result.


2013 ◽  
Vol 41 (5) ◽  
pp. 1159-1165 ◽  
Author(s):  
Shiksha Mantri ◽  
K. Tanuj Sapra

Realization of a functional artificial cell, the so-called protocell, is a major challenge posed by synthetic biology. A subsequent goal is to use the protocellular units for the bottom-up assembly of prototissues. There is, however, a looming chasm in our knowledge between protocells and prototissues. In the present paper, we give a brief overview of the work on protocells to date, followed by a discussion on the rational design of key structural elements specific to linking two protocellular bilayers. We propose that designing synthetic parts capable of simultaneous insertion into two bilayers may be crucial in the hierarchical assembly of protocells into a functional prototissue.


1986 ◽  
Vol 9 (5) ◽  
pp. 285-288 ◽  
Author(s):  
T.M.S. Chang

The author reviewed artificial cells and their applications in hemoperfusion for chronic renal failure, poisoning, fulminant hepatic failure, removal of aluminium and iron, and metabolic assists. Other areas reviewed included artificial cells containing enzymes, multienzymes, immunosorbents, cell cultures and other areas. Artificial cells can be formed as membrane coated adsorbent or microencapsulated adsorbent, enzymes and cells (1-3). The large surface to volume relationship and the ultrathin membrane of artificial cells allows the rapid equilibration of metabolites (1-3). Artificial cells containing enzymes, ion exchange resin and activated charcoal have been used for hemoperfusion (4). The microencapsulated or membrane coated absorbents, enzymes, cells, immunosorbents and other material are prevented from releasing unwanted material into the circulation and prevented from adverse effects on blood cells. Because of the problem of charcoal in releasing emboli and depleting platelets (5) we first developed coated activated charcoal hemoperfusion for clinical application (6, 7). This has been used extensively in clinical studies. The artificial cell approach has also been applied to a number of other hemoperfusion approaches. The lack of space only allows this paper to summarize some of the approaches originated from this research centre.


2015 ◽  
Vol 17 (24) ◽  
pp. 15534-15537 ◽  
Author(s):  
Yuval Elani ◽  
Robert V. Law ◽  
Oscar Ces

Spatially segregated in vitro protein expression in a vesicle-based artificial cell, with different proteins synthesised in defined vesicle regions.


IEEE Pulse ◽  
2015 ◽  
Vol 6 (5) ◽  
pp. 40-46 ◽  
Author(s):  
Elisa Perez ◽  
Sergio E. Ponce ◽  
David J. Piccinini ◽  
Natalia Lopez ◽  
Max E. Valentinuzzi

ACS Catalysis ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 2181-2198 ◽  
Author(s):  
Wu Zhou ◽  
Nikolaos Soultanidis ◽  
Hui Xu ◽  
Michael S. Wong ◽  
Matthew Neurock ◽  
...  

2016 ◽  
Vol 44 (3) ◽  
pp. 723-730 ◽  
Author(s):  
Yuval Elani

The quest to construct artificial cells from the bottom-up using simple building blocks has received much attention over recent decades and is one of the grand challenges in synthetic biology. Cell mimics that are encapsulated by lipid membranes are a particularly powerful class of artificial cells due to their biocompatibility and the ability to reconstitute biological machinery within them. One of the key obstacles in the field centres on the following: how can membrane-based artificial cells be generated in a controlled way and in high-throughput? In particular, how can they be constructed to have precisely defined parameters including size, biomolecular composition and spatial organization? Microfluidic generation strategies have proved instrumental in addressing these questions. This article will outline some of the major principles underpinning membrane-based artificial cells and their construction using microfluidics, and will detail some recent landmarks that have been achieved.


Author(s):  
G. N. Gerasimov ◽  
V. F. Gromov ◽  
M. I. Ikim ◽  
L. I. Trachtenberg

Abstract The relationship between the structure and properties of nanoscale conductometric sensors based on binary mixtures of metal oxides in the detection of reducing gases in the environment is considered. The sensory effect in such systems is determined by the chemisorption of oxygen molecules and the detected gas on the surface of metal oxide catalytically active particles, the transfer of the reaction products to electron-rich nanoparticles, and subsequent reactions. Particular attention is paid to the doping of nanoparticles of the sensitive layer. In particular, the effect of doping on the concentration of oxygen vacancies, the activity of oxygen centers, and the adsorption properties of nanoparticles is discussed. In addition, the role of heterogeneous contacts is analyzed.


Sign in / Sign up

Export Citation Format

Share Document