REMINDER: CrystEngComm - Invitation to submit an article Band gap modulation of organic-inorganic Sb(Ⅲ) halide by molecular design

CrystEngComm ◽  
2022 ◽  
Author(s):  
Yan-Ning Wang ◽  
Liang Tong ◽  
Min Wan ◽  
Jing-Yuan Liu ◽  
Si-Yu Ye ◽  
...  

Organic-inorganic hybrid materials have structural diversity and flexibility. The introduction of Sb(Ⅲ) metal ions in the inorganic part can bring about semiconductor performance. In this paper, we successfully adjusted the...

2001 ◽  
Vol 169 (1) ◽  
pp. 221-230 ◽  
Author(s):  
Luciana Sartore ◽  
Maurizio Penco ◽  
Fabio Bigotti ◽  
Cristian Pedrotti ◽  
Salvatore D'Antone

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Luciana Sartore ◽  
Kamol Dey

In this research work, novel hybrid materials based on multifunctional polymers and silica were developed and investigated in view of possible employment as sorbents for removal of heavy metal ions from water in presence of various ions. Organic-inorganic hybrid materials were prepared by covalent bonding of vinyl-terminated polyamidoamine (PAA) onto aminated silica particles. Two series of polyamidoamine-grafted silica, differing in the PAA chemical structure, were synthesized, and their heavy metal ions chelating properties were investigated. Column adsorption procedure for Cu, Zn, and Ni in aqueous solution was successfully established. Moreover, the adsorption behaviour of the materials was evaluated in different ionic strength solutions as well as in distilled and natural water. Organic-inorganic hybrid materials exhibited excellent chelating properties and selectivity for different metal ions. The hybrid columns showed exceptional eluting and regenerating property using diluted hydrochloric acid solution as eluent. In particular, the hybrid materials containing more carboxy groups possessed superior adsorption ability, reusability, and stability. The consecutive adsorption-desorption experiments exhibited that this material could be reused more than 20 cycles without almost any loss of adsorption capability. These new organic-inorganic sorbents appear very promising as an effective solid-phase extraction material for the selective preconcentration or removing of heavy metal ions from the environment.


2001 ◽  
Vol 3 (1-2) ◽  
pp. 211-222 ◽  
Author(s):  
Anne-Christine Franville ◽  
Rachid Mahiou ◽  
Daniel Zambon ◽  
Jean-Claude Cousseins

2008 ◽  
Author(s):  
Jong Hwa Jung ◽  
Doo Ri Bae ◽  
Hey Young Lee ◽  
Won Seok Han ◽  
Eun-jeong Kim ◽  
...  

2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2015 ◽  
Vol 16 (12) ◽  
pp. 1070-1077
Author(s):  
Carla Villa ◽  
Chiara Lacapra ◽  
Roberto Rosa ◽  
Paolo Veronesi ◽  
Cristina Leonelli

2021 ◽  
Vol 9 (12) ◽  
pp. 4338-4343
Author(s):  
Hong-Yi Shen ◽  
Lei He ◽  
Ping-Ping Shi ◽  
Qiong Ye

Two organic–inorganic hybrid materials exhibit functional regulation by introducing homochiral cations and different reagent ratios.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1460
Author(s):  
Khadega A. Al-Maqdi ◽  
Muhammad Bilal ◽  
Ahmed Alzamly ◽  
Hafiz M. N. Iqbal ◽  
Iltaf Shah ◽  
...  

As a result of their unique structural and multifunctional characteristics, organic–inorganic hybrid nanoflowers (hNFs), a newly developed class of flower-like, well-structured and well-oriented materials has gained significant attention. The structural attributes along with the surface-engineered functional entities of hNFs, e.g., their size, shape, surface orientation, structural integrity, stability under reactive environments, enzyme stabilizing capability, and organic–inorganic ratio, all significantly contribute to and determine their applications. Although hNFs are still in their infancy and in the early stage of robust development, the recent hike in biotechnology at large and nanotechnology in particular is making hNFs a versatile platform for constructing enzyme-loaded/immobilized structures for different applications. For instance, detection- and sensing-based applications, environmental- and sustainability-based applications, and biocatalytic and biotransformation applications are of supreme interest. Considering the above points, herein we reviewed current advances in multifunctional hNFs, with particular emphasis on (1) critical factors, (2) different metal/non-metal-based synthesizing processes (i.e., (i) copper-based hNFs, (ii) calcium-based hNFs, (iii) manganese-based hNFs, (iv) zinc-based hNFs, (v) cobalt-based hNFs, (vi) iron-based hNFs, (vii) multi-metal-based hNFs, and (viii) non-metal-based hNFs), and (3) their applications. Moreover, the interfacial mechanism involved in hNF development is also discussed considering the following three critical points: (1) the combination of metal ions and organic matter, (2) petal formation, and (3) the generation of hNFs. In summary, the literature given herein could be used to engineer hNFs for multipurpose applications in the biosensing, biocatalysis, and other environmental sectors.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anna Kanegae ◽  
Yusuke Takata ◽  
Ippei Takashima ◽  
Shohei Uchinomiya ◽  
Ryosuke Kawagoe ◽  
...  

AbstractDespite continuous and active development of fluorescent metal-ion probes, their molecular design for ratiometric detection is restricted by the limited choice of available sensing mechanisms. Here we present a multicolor and ratiometric fluorescent sensing platform for metal ions based on the interaction between the metal ion and the aromatic ring of a fluorophore (arene–metal-ion, AM, coordination). Our molecular design provided the probes possessing a 1,9-bis(2′-pyridyl)-2,5,8-triazanonane as a flexible metal ion binding unit attached to a tricyclic fluorophore. This architecture allows to sense various metal ions, such as Zn(II), Cu(II), Cd(II), Ag(I), and Hg(II) with emission red-shifts. We showed that this probe design is applicable to a series of tricyclic fluorophores, which allow ratiometric detection of the metal ions from the blue to the near-infrared wavelengths. X-ray crystallography and theoretical calculations indicate that the coordinated metal ion has van der Waals contact with the fluorophore, perturbing the dye’s electronic structure and ring conformation to induce the emission red-shift. A set of the probes was useful for the differential sensing of eight metal ions in a one-pot single titration via principal component analysis. We also demonstrate that a xanthene fluorophore is applicable to the ratiometric imaging of metal ions under live-cell conditions.


Sign in / Sign up

Export Citation Format

Share Document