scholarly journals Effects of Surface Contamination on the Interfacial Properties of CO2/Water/Calcite Systems

Author(s):  
Tran Thi Bao Le ◽  
Candice Divine-Ayela ◽  
Alberto Striolo ◽  
David R. Cole

Understanding the wetting properties of reservoir rocks can be of great benefit for advanced applications such as the effective trapping and geological storage of CO2. Despite their importance, not all...

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anastasia Ivanova ◽  
Nikolai Mitiurev ◽  
Alexey Cheremisin ◽  
Anton Orekhov ◽  
Roman Kamyshinsky ◽  
...  

2009 ◽  
Vol 58 (4) ◽  
pp. 259 ◽  
Author(s):  
A Shogenova ◽  
S Sliaupa ◽  
R Vaher ◽  
K Shogenov ◽  
R Pomeranceva

Author(s):  
M. E. Twigg ◽  
B. R. Bennett ◽  
J. R. Waterman ◽  
J. L. Davis ◽  
B. V. Shanabrook ◽  
...  

Recently, the GaSb/InAs superlattice system has received renewed attention. The interest stems from a model demonstrating that short period Ga1-xInxSb/InAs superlattices will have both a band gap less than 100 meV and high optical absorption coefficients, principal requirements for infrared detector applications. Because this superlattice system contains two species of cations and anions, it is possible to prepare either InSb-like or GaAs-like interfaces. As such, the system presents a unique opportunity to examine interfacial properties.We used molecular beam epitaxy (MBE) to prepare an extensive set of GaSb/InAs superlattices grown on an GaSb buffer, which, in turn had been grown on a (100) GaAs substrate. Through appropriate shutter sequences, the interfaces were directed to assume either an InSb-like or GaAs-like character. These superlattices were then studied with a variety of ex-situ probes such as x-ray diffraction and Raman spectroscopy. These probes confirmed that, indeed, predominantly InSb-like and GaAs-like interfaces had been achieved.


2021 ◽  
Author(s):  
Ruoyang Liu ◽  
Ke Tian Tan ◽  
Yifan Gong ◽  
Yongzhi Chen ◽  
Zhuoer Li ◽  
...  

Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.


2020 ◽  
Vol 91 (3) ◽  
pp. 31301
Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Meriem Boutaldat ◽  
Marwane Rouway ◽  
Adil Eddiai ◽  
...  

Novel textiles have received a lot of attention from researchers in the last decade due to some of their unique features. The introduction of intelligent materials into textile structures offers an opportunity to develop multifunctional textiles, such as sensing, reacting, conducting electricity and performing energy conversion operations. In this research work nanocomposite-based highly piezoelectric and electroactive β-phase new textile has been developed using the pad-dry-cure method. The deposition of poly (vinylidene fluoride) (PVDF) − carbon nanofillers (CNF) − tetraethyl orthosilicate (TEOS), Si(OCH2CH3)4 was acquired on a treated textile substrate using coating technique followed by evaporation to transform the passive (non-functional) textile into a dynamic textile with an enhanced piezoelectric β-phase. The aim of the study is the investigation of the impact the coating of textile via piezoelectric nanocomposites based PVDF-CNF (by optimizing piezoelectric crystalline phase). The chemical composition of CT/PVDF-CNC-TEOS textile was detected by qualitative elemental analysis (SEM/EDX). The added of 0.5% of CNF during the process provides material textiles with a piezoelectric β-phase of up to 50% has been measured by FTIR experiments. These results indicated that CNF has high efficiency in transforming the phase α introduced in the unloaded PVDF, to the β-phase in the case of nanocomposites. Consequently, this fabricated new textile exhibits glorious piezoelectric β-phase even with relatively low coating content of PVDF-CNF-TEOS. The study demonstrates that the pad-dry-cure method can potentially be used for the development of piezoelectric nanocomposite-coated wearable new textiles for sensors and energy harvesting applications. We believe that our study may inspire the research area for future advanced applications.


2002 ◽  
Author(s):  
M. Hoover ◽  
M. McCawley ◽  
D. Yereb ◽  
S. Tinkle ◽  
S. Beaton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document