scholarly journals Simulated Raman spectra of Bulk and Low-Dimensional Phosphorus Allotropes

Author(s):  
Anthony Impellizzeri ◽  
Anya Vorfolomeeva ◽  
Nikolay Surovtsev ◽  
Alexander V. Okotrub ◽  
Chris Ewels ◽  
...  

We present a comprehensive theoretical and experimental Raman spectroscopic comparative study of bulk Phosphorus allotropes (white, black, Hittorf’s, Fibrous) and their monolayer equivalents, demonstrating that the application of the Placzek...

2021 ◽  
Vol 22 (10) ◽  
pp. 5380
Author(s):  
Boris A. Kolesov

The work outlines general ideas on how the frequency and the intensity of proton vibrations of X–H×××Y hydrogen bonding are formed as the bond evolves from weak to maximally strong bonding. For this purpose, the Raman spectra of different chemical compounds with moderate, strong, and extremely strong hydrogen bonds were obtained in the temperature region of 5 K–300 K. The dependence of the proton vibrational frequency is schematically presented as a function of the rigidity of O-H×××O bonding. The problems of proton dynamics on tautomeric O–H···O bonds are considered. A brief description of the N–H···O and C–H···Y hydrogen bonds is given.


1982 ◽  
Vol 25 (6A) ◽  
pp. 685-687 ◽  
Author(s):  
E J Samuelsen ◽  
U Buchenau ◽  
M Dieter ◽  
K Ehrhardt ◽  
E Fjær ◽  
...  

2004 ◽  
Vol 18 (09) ◽  
pp. 367-373 ◽  
Author(s):  
I. ARDELEAN ◽  
N. MUREŞAN ◽  
P. PĂŞCUŢĂ

The Cr 2 O 3 content influence on the structure of 70 TeO 2·25 B 2 O 3·5 SrO glasses, was investigated by infrared and Raman spectroscopies. The results show that BO 3 and BO 4 are among the main structural units in the investigated glasses, together with TeO 3 and TeO 4 units. The presence of chromium ions located in the glass network is well evidenced in the IR and Raman spectra.


2021 ◽  
Vol 33 (3) ◽  
pp. 283-297
Author(s):  
Evgeniy Nikolaevich Kozlov ◽  
Ekaterina Nikolaevna Fomina ◽  
Vladimir Nikolaevich Bocharov ◽  
Mikhail Yurievich Sidorov ◽  
Natalia Sergeevna Vlasenko ◽  
...  

Abstract. Raman spectra of three natural carbonophosphates (sidorenkite, bonshtedtite, and bradleyite) with the general formula Na3MCO3PO4 (M is Mn, Fe, and Mg) were studied and compared. These spectra showed from 21 to 24 vibrational bands, of which the two most intense (964±5 and 1074±3 cm−1) correspond to the υ1(P–O) and υ1(C–O) modes. These two bands split into doublet peaks due to the occurrence of isomorphic impurities. It was found that the crystallographic orientation of the sample influences the intensity of most bands. Most bands assigned to the same vibrations showed a regular shift (the smallest in sidorenkite spectra, an intermediate in bonshtedtite, and the largest in bradleyite). We propose an algorithm that allows for diagnostics of carbonophosphates in inclusions by their Raman spectra, providing a reliable result even in the absence of energy-dispersive X-ray spectroscopy (EDX) data.


2015 ◽  
Vol 7 (12) ◽  
pp. 5041-5052 ◽  
Author(s):  
Laura T. Kerr ◽  
Hugh J. Byrne ◽  
Bryan M. Hennelly

Comparison of Raman spectra recorded from fresh cheek cells across ten sample substrates and five source wavelengths.


1978 ◽  
Vol 31 (10) ◽  
pp. 2137 ◽  
Author(s):  
GA Bowmaker ◽  
RJ Knappstein ◽  
SF Tham

The infrared and Raman spectra of [Et3PcuI]4 and [Et3AsCuI]4 have been measured, and bands have been assigned to vibrations of the ligand and of the Td Cu4I4 core. The far-infrared spectra show two strong T2 v(CuI) bands at about 90 and 140 cm-1, the higher frequency member of which has a Raman counterpart which shows possible longitudinal-transverse splitting. The Raman spectra also show an intense band at about 50 cm-1. Similar features have been observed in the low-frequency vibrational spectra of [Et2S]3 [CuI]4, [C5H5NcuI]4, [C5H11NAgI]4, [Et3PAgBr]4 and [Et3PagCl]4, although the last two compounds gave only a single broad band in the v(MX) region.


2020 ◽  
Vol 10 (17) ◽  
pp. 5918
Author(s):  
Azin Sadat ◽  
Iris J. Joye

FTIR and Raman spectroscopy are often used to investigate the secondary structure of proteins. Focus is then often laid on the different features that can be distinguished in the Amide I band (1600–1700 cm−1) and, to a lesser extent, the Amide II band (1510–1580 cm−1), signature regions for C=O stretching/N-H bending, and N-H bending/C-N stretching vibrations, respectively. Proper investigation of all hidden and overlapping features/peaks is a necessary step to achieve reliable analysis of FTIR and FT-Raman spectra of proteins. This paper discusses a method to identify, separate, and quantify the hidden peaks in the amide I band region of infrared and Raman spectra of four globular proteins in aqueous solution as well as hydrated zein and gluten proteins. The globular proteins studied, which differ widely in terms of their secondary structures, include immunoglobulin G, concanavalin A, lysozyme, and trypsin. Peak finding was done by analysis of the second derivative of the original spectra. Peak separation and quantification was achieved by curve fitting using the Voigt function. Structural data derived from the FT-Raman and FTIR analyses were compared to literature reports on protein structure. This manuscript proposes an accurate method to analyze protein secondary structure based on the amide I band in vibrational spectra.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5453
Author(s):  
Min Wang ◽  
Changhao Wang ◽  
Jian Wang ◽  
Liming Lu ◽  
Xiaoye Gong ◽  
...  

In situ high-temperature Raman spectra of polycrystalline KBi(MoO4)2 were recorded from room temperature to 1073 K. Thermal stability of the monoclinic KBi(MoO4)2 was examined by temperature-dependent XRD. The monoclinic phase transformed into the scheelite tetragonal structure at 833 K, and then to the monoclinic phase at 773 K. Quantum chemistry ab initio calculation was performed to simulate the Raman spectra of the structure of KBi(MoO4)2 high-temperature melt. The experimental Raman band at 1023 K was deconvoluted into seven Gaussian peaks, and the calculated results were in good agreement with the experimental data. Therefore, the vibrational modes of Raman peaks of molten KBi(MoO4)2 were assigned. It was confirmed that the isolated structure of [Bi(MoO4)2]− monomer, consisting of Mo6+ centers and Bi3+ sub-centers connected by edge-sharing, mainly exists in the melt of KBi(MoO4)2.


Sign in / Sign up

Export Citation Format

Share Document