One Order of Magnitude Increase of Triplet State Lifetime Observed in Deprotonated Form Selenium Substituted Uracil

Author(s):  
Peipei Jin ◽  
Xueli Wang ◽  
Haifeng Pan ◽  
Jinquan Chen

Selenium nucleic acids possess unique properties and have been demonstrated to have a wide range of applications such as DNA X-ray crystallography and novel medical therapies. Yet, as a heavy...

1991 ◽  
Vol 9 (2) ◽  
pp. 493-499
Author(s):  
D. Naccache ◽  
J-L. Bourgade ◽  
P. Combis ◽  
C. J. Keane ◽  
J-P. Le Breton ◽  
...  

We present some significant results of collisional excitation X-ray laser experiments in plasmas produced by a laser. We studied the amplification in Ne- and Ni-like ions by varying both the nature and the thickness of targets, the irradiation, and the wavelength of the driving laser. Some potentially interesting scalings as a function of the atomic number of the lasing element are demonstrated in the Ne-like system. An order-of-magnitude increase in gain in the Ni-like experiments was determined.


Synthesis ◽  
2020 ◽  
Author(s):  
Mikhail Krasavin ◽  
Judith Synofzik ◽  
Olga Bakulina ◽  
Olga Balabas ◽  
Dmitry Dar’in

A wide range of α-diazo-β-ketosulfones have been applied to thermally promoted tandem Wolff rearrangement – Staudinger [2+2] cycloaddition with imines to give polysubstituted β-lactam sulfones. Dia­stereomerically pure syn-diastereomers were obtained in good yields and the relative stereochemistry was confirmed by single-crystal X-ray crystallography. These findings significantly expand the scope of this transformation, in contrast to substantial limitations reported previously. Moreover, this methodology enables flexible exploration of new substitution patterns around the privileged β-lactam core for drug design and optimization.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 854
Author(s):  
Ki Hyun Nam

Radiation damage and cryogenic sample environment are an experimental limitation observed in the traditional X-ray crystallography technique. However, the serial crystallography (SX) technique not only helps to determine structures at room temperature with minimal radiation damage, but it is also a useful tool for profound understanding of macromolecules. Moreover, it is a new tool for time-resolved studies. Over the past 10 years, various sample delivery techniques and data collection strategies have been developed in the SX field. It also has a wide range of applications in instruments ranging from the X-ray free electron laser (XFEL) facility to synchrotrons. The importance of the various approaches in terms of the experimental techniques and a brief review of the research carried out in the field of SX has been highlighted in this editorial.


1997 ◽  
Vol 119 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Y. Ichida ◽  
K. Kishi

CBN grinding wheels are increasingly used on a wide range of engineering materials. This paper compares the grinding performance of monocrystalline (M-CBN) and polycrystalline (P-CBN) abrasives with a newly developed nanocrystalline (N-CBN) abrasive, when grinding nickel-based superalloys. The N-CBN grits possess average crystal grain diameters less than 1 μm compared to average primary grain diameters of 2.3 μm for P-CBN. It was found that the nanocrystalline CBN grits possess higher fracture strength which give reduced wear rates and yield an order of magnitude increase in grinding wheel life. Analysis of the cutting edge distribution shows that the reduced wear rate of N-CBN is due to the predominance of a micro-fracturing mode of abrasive wear. The size of this micro-fracturing is considerably smaller in N-CBN than in P-CBN.


1972 ◽  
Vol 130 (2) ◽  
pp. 453-465 ◽  
Author(s):  
S. Arnott ◽  
D. W. L. Hukins

A survey was made of the geometry of furanose rings in β-nucleotides and β-nucleosides (as monomers related to nucleic acids) for which structures have been determined by X-ray crystallography. Mean values, and estimated standard deviations from them, were calculated for bond-lengths, bond-angles and conformation-angles. For parameters with values dependent on ring-puckering, separate calculations were made for each ring type. (The rings are puckered in one of three conformations: C-2- or C-3-endo or C-3-exo; C-2-exo has not been observed.) The results were used to compute standard furanose rings with C-2-endo, C-3-endo and C-3-exo conformations for use in nucleic acid molecular model-building. The survey also showed that the only other conformation-angle in nucleotides dependent on the furanose ring conformation corresponds to the relative orientation of the purine (or pyrimidine) base and the ring.


2010 ◽  
Vol 43 (4) ◽  
pp. 926-928 ◽  
Author(s):  
X. R. Huang

LauePtis a robust and extremely easy-to-use Windows application for accurately simulating, indexing and analyzing white-beam X-ray diffraction Laue patterns of any crystals under arbitrary diffraction geometry. This program has a user-friendly graphic interface and can be conveniently used by nonspecialists with little X-ray diffraction or crystallography knowledge. Its wide range of applications include (1) determination of single-crystal orientation with the Laue method, (2) white-beam topography, (3) white-beam microdiffraction, (4) X-ray studies of twinning, domains and heterostructures, (5) verification or determination of crystal structures from white-beam diffraction, and (6) teaching of X-ray crystallography.


2013 ◽  
Vol 78 (8) ◽  
pp. 1161-1170 ◽  
Author(s):  
Mirjana Lalovic ◽  
Vukadin Leovac ◽  
Ljiljana Vojinovic-Jesic ◽  
Marko Rodic ◽  
Ljiljana Jovanovic ◽  
...  

Three square-pyramidal complexes of dioxidovanadium(V) with pyridoxalaminoguanidine (PLAG), of the formulas NH4[VO2(PLAG?2H)]?H2O (1), VO2(PLAG?H) (2) and K[VO2(PLAG?2H)]?H2O (3) have been synthesized and characterized by IR and UV-Vis spectral analysis and in case of 1 and 3 by X-ray crystallography as well. The reaction of aqueous ammoniacal solution of NH4VO3 and PLAG resulted in formation of 1, which in MeOH undergoes spontaneous transformation into 2, which, in turn, in the reaction with KOH transforms into 3. In these complexes PLAG is coordinated in a common tridentate ONN mode, via phenoxide oxygen atom and nitrogen atoms of azomethine and imino groups of the aminoguanidine fragment. In all previously characterized complexes PLAG was coordinated in neutral form. However, here we have proven that this ligand can be coordinated in both mono- (2) and doubly deprotonated form (1 and 3) as well. [Projekat Ministarstva nauke Republike Srbije, br. 172014].


2021 ◽  
Author(s):  
◽  
Almas Ismaeil Zayya

<p>This thesis describes the synthesis and coordination chemistry of bicyclic phosphorus-nitrogen (PN) ligands containing the rigid and preorganised bicyclo[3.3.1]nonan-9-one framework. The PN ligands were prepared via the Mannich condensation reaction of four different phosphorinanone classes with amines and aldehydes. The phosphorinanone compounds, 2,6-dimethyl-3,5-diphenyl-4-phenyl-4- phosphacyclohexanone (isomers 50 and 51), 3,5-diphenyl-4-phenyl-4- phosphacyclohexanone (44, 45) and 4-phenyl-4-phosphacyclohexanone (42) were prepared by literature methods, whereas the isomers of 4-t-butyl-2,6- di(carbomethoxy) - 3,5 - bis(p - dimethylaminophenyl) - 4 - phosphacyclohexanone (53, 54) were synthesised by the reaction of ButPH2 with 2,4-di(carbomethoxy)- 1,5 - bis(p - dimethylaminophenyl)penta - 1,4 - dien - 3 - one (38). The Mannich reactions of phosphorinanones 50 and 51 were not successful, whereas the reactions of 44, 45 and 42 produced unidentifiable products. The reaction of phosphorinanone 53 with methylamine and formaldehyde produced the bicyclic PN compound 7-t-butyl-1,5-di(carbomethoxy)-6,8-bis(p-dimethylaminophenyl)- 3 - methyl - 3 - aza - 7 - phosphabicyclo[3.3.1]nonan - 9 - one (65). The identical Mannich reaction of phosphorinanone 54 also yielded 65, as well as the PN compound 4-t-butyl-6-carbomethoxy-5-(p-dimethylaminophenyl)- 2-methyl-2-aza-4-phosphacyclohexanone (66) and the E/Z isomers of 3-(p-dimethylaminophenyl)methyl-2-propenoate (67). The bicyclic PN ligand 65 adopts a chair-chair conformation in solution and the solid state as confirmed by X-ray crystallography. The coordination chemistry of this ligand was comprehensively explored with rhodium, palladium and platinum, and a wide range of complexes were synthesised including [ML2(65)] (M = Pd, Pt; L = Cl, Me), [ML(65)] (M = Rh, Pd, Pt; L = C2H4, cod, dba, norb) (cod = cycloocta-1,5-diene, dba = trans,trans- dibenzylideneacetone, norb = norborn-2-ene), [Pd(n3 -C3H5)(65)]X (X = Cl, SbF6) and [PtL(65)]CH(SO2CF3)2 (L = 1-o,4-5-n-C8H13, 1-3-n-C8H13). Cycloplatination at the ortho-position of the 6,8-dimethylaminophenyl sub- stituents was an interesting feature of the coordination chemistry of PN ligand 65. Ortho-metallation at both dimethylaminophenyl groups led to the formation of complex [Pt(C2H4)(65-2H)] (76), whereas metallation of only one aryl group produced the complex [Pt(C8H13)(65-H)] (87). Further reaction of complex 76 yielded the trans- and cis-hydroxo-bridged dimers [Pt2(u-OH)2(65-H)2] (98, 101). The nitrogen donor atom is not coordinated to the platinum metal centres in the cyclometallated PN complexes. Protonation of [Pt(C2H4)(65)] (75) with CH2(SO2CF3)2 produced the hydride complex [PtH{CH(SO2CF3)2}(65)] (92) and the agostic ethyl complex [Pt(C2H5)(65)]CH(SO2CF3)2 (93). Similarly, protonation of [Pt(norb)(65)] (74) with CHPh(SO2CF3)2 gave the norbornyl agostic complex [Pt(C7H11)(65)]CPh(SO2CF3)2 (94) as confirmed by X-ray crystallography.  In addition, hydrated analogues of some of the coordination complexes of PN ligand 65 mentioned previously were also observed. In such complexes, the central carbonyl group at position 9 was hydrated to form a geminal diol. The hydrated complexes exhibited similar chemical characteristics to their ketone counterparts. The 15N NMR chemical shifts of the nitrogen donor atom in PN ligand 65 and its various metal complexes were obtained from inversely-detected 1H- 15N HMBC experiments. The NMR data showed no explicit relationship between the coordination mode of the nitrogen group and the 15N chemical shift.</p>


2021 ◽  
Author(s):  
◽  
Almas Ismaeil Zayya

<p>This thesis describes the synthesis and coordination chemistry of bicyclic phosphorus-nitrogen (PN) ligands containing the rigid and preorganised bicyclo[3.3.1]nonan-9-one framework. The PN ligands were prepared via the Mannich condensation reaction of four different phosphorinanone classes with amines and aldehydes. The phosphorinanone compounds, 2,6-dimethyl-3,5-diphenyl-4-phenyl-4- phosphacyclohexanone (isomers 50 and 51), 3,5-diphenyl-4-phenyl-4- phosphacyclohexanone (44, 45) and 4-phenyl-4-phosphacyclohexanone (42) were prepared by literature methods, whereas the isomers of 4-t-butyl-2,6- di(carbomethoxy) - 3,5 - bis(p - dimethylaminophenyl) - 4 - phosphacyclohexanone (53, 54) were synthesised by the reaction of ButPH2 with 2,4-di(carbomethoxy)- 1,5 - bis(p - dimethylaminophenyl)penta - 1,4 - dien - 3 - one (38). The Mannich reactions of phosphorinanones 50 and 51 were not successful, whereas the reactions of 44, 45 and 42 produced unidentifiable products. The reaction of phosphorinanone 53 with methylamine and formaldehyde produced the bicyclic PN compound 7-t-butyl-1,5-di(carbomethoxy)-6,8-bis(p-dimethylaminophenyl)- 3 - methyl - 3 - aza - 7 - phosphabicyclo[3.3.1]nonan - 9 - one (65). The identical Mannich reaction of phosphorinanone 54 also yielded 65, as well as the PN compound 4-t-butyl-6-carbomethoxy-5-(p-dimethylaminophenyl)- 2-methyl-2-aza-4-phosphacyclohexanone (66) and the E/Z isomers of 3-(p-dimethylaminophenyl)methyl-2-propenoate (67). The bicyclic PN ligand 65 adopts a chair-chair conformation in solution and the solid state as confirmed by X-ray crystallography. The coordination chemistry of this ligand was comprehensively explored with rhodium, palladium and platinum, and a wide range of complexes were synthesised including [ML2(65)] (M = Pd, Pt; L = Cl, Me), [ML(65)] (M = Rh, Pd, Pt; L = C2H4, cod, dba, norb) (cod = cycloocta-1,5-diene, dba = trans,trans- dibenzylideneacetone, norb = norborn-2-ene), [Pd(n3 -C3H5)(65)]X (X = Cl, SbF6) and [PtL(65)]CH(SO2CF3)2 (L = 1-o,4-5-n-C8H13, 1-3-n-C8H13). Cycloplatination at the ortho-position of the 6,8-dimethylaminophenyl sub- stituents was an interesting feature of the coordination chemistry of PN ligand 65. Ortho-metallation at both dimethylaminophenyl groups led to the formation of complex [Pt(C2H4)(65-2H)] (76), whereas metallation of only one aryl group produced the complex [Pt(C8H13)(65-H)] (87). Further reaction of complex 76 yielded the trans- and cis-hydroxo-bridged dimers [Pt2(u-OH)2(65-H)2] (98, 101). The nitrogen donor atom is not coordinated to the platinum metal centres in the cyclometallated PN complexes. Protonation of [Pt(C2H4)(65)] (75) with CH2(SO2CF3)2 produced the hydride complex [PtH{CH(SO2CF3)2}(65)] (92) and the agostic ethyl complex [Pt(C2H5)(65)]CH(SO2CF3)2 (93). Similarly, protonation of [Pt(norb)(65)] (74) with CHPh(SO2CF3)2 gave the norbornyl agostic complex [Pt(C7H11)(65)]CPh(SO2CF3)2 (94) as confirmed by X-ray crystallography.  In addition, hydrated analogues of some of the coordination complexes of PN ligand 65 mentioned previously were also observed. In such complexes, the central carbonyl group at position 9 was hydrated to form a geminal diol. The hydrated complexes exhibited similar chemical characteristics to their ketone counterparts. The 15N NMR chemical shifts of the nitrogen donor atom in PN ligand 65 and its various metal complexes were obtained from inversely-detected 1H- 15N HMBC experiments. The NMR data showed no explicit relationship between the coordination mode of the nitrogen group and the 15N chemical shift.</p>


Author(s):  
Mark Lorch

This chapter traces the history of biochemistry, which is linked to the understanding of arguably the oldest uses of biotechnology—fermentation and the production of alcoholic beverages and cheese. In the 19th century, at the same time as the fermentation debates and enzymology flourished, the nature of proteins was under scrutiny. The chapter then considers the contribution that X-ray crystallography has made to structural biology. By the mid-20th century, the structures of the two massive molecular players, protein and nucleic acids (DNA along with ribonucleic acid), and their myriad roles were in place. It was becoming apparent that these were the fundamental molecular machines that marshal the chemistry within cells.


Sign in / Sign up

Export Citation Format

Share Document