Clustering of metal dopants in defect sites of graphene-based materials

Author(s):  
Stephanie Lambie ◽  
Krista G. Steenbergen ◽  
Nicola Gaston ◽  
Beate Paulus
Keyword(s):  

Selected defect sites in graphene thermodynamically favour single atom doping over clustering, when doped with noble and p-block elements.

2012 ◽  
Vol 18 (6) ◽  
pp. 1342-1354 ◽  
Author(s):  
Wu Zhou ◽  
Mark P. Oxley ◽  
Andrew R. Lupini ◽  
Ondrej L. Krivanek ◽  
Stephen J. Pennycook ◽  
...  

AbstractWe show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.


2020 ◽  
Vol 6 (49) ◽  
pp. eabc9308
Author(s):  
He Liu ◽  
Daniel Grasseschi ◽  
Akhil Dodda ◽  
Kazunori Fujisawa ◽  
David Olson ◽  
...  

Surface functionalization of metallic and semiconducting 2D transition metal dichalcogenides (TMDs) have mostly relied on physi- and chemi-sorption at defect sites, which can diminish the potential applications of the decorated 2D materials, as structural defects can have substantial drawbacks on the electronic and optoelectronic characteristics. Here, we demonstrate a spontaneous defect-free functionalization method consisting of attaching Au single atoms to monolayers of semiconducting MoS2(1H) via S-Au-Cl coordination complexes. This strategy offers an effective and controllable approach for tuning the Fermi level and excitation spectra of MoS2 via p-type doping and enhancing the thermal boundary conductance of monolayer MoS2, thus promoting heat dissipation. The coordination-based method offers an effective and damage-free route of functionalizing TMDs and can be applied to other metals and used in single-atom catalysis, quantum information devices, optoelectronics, and enhanced sensing.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Le Thi Hoa ◽  
Le Thi Thanh Nhi ◽  
Le Van Thanh Sơn ◽  
Nguyen Le My Linh ◽  
Ho Van Minh Hai ◽  
...  

Herein, the single-atom Ni site heterogeneous catalysts supported by the UiO-66 structure (University of Oslo-66 metal organic framework) were successfully synthesized by a postsynthetic metalation method, where Ni ions are covalently attached to the missing-linker defect sites at zirconium oxide clusters (Zr6O4(OH)4) in as-prepared UiO-66 structure, [Zr6O4(OH)4(BDC)(DMF)10(OH)10] (BDC (benzene-1,4-dicarboxylate), DMF (dimethylformamide)). The structure properties of the catalysts were characterized using powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), N2 adsorption-desorption isotherms (BET), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). It was found that single-atom Ni heterogeneous catalysts supported by the UiO-66 structure, UiO-66/Ni1.0 [Zr6O4(OH)4(C8H4O4)(DMF)10(OH)8Ni2(OH)2(Cl)2], showed a sphere-like morphology with a high specific surface area as well as good thermal stability. Specifically, the as-prepared UiO-66/Ni1.0 exhibited the excellent catalytic activity and stability for 4-nitrophenol reduction in terms of low activation energy ( E a = 23.15   kJ   mo l − 1 ), high turnover frequency (76.19 molecules g-1 min-1), and high apparent rate constant ( k app = 0.956 mi n − 1 ). In addition, methylene blue (MB) was also chosen as the organic dye model for catalytic reduction reaction. The k app and TOF for the reduction of MB using UiO-66/Ni1.0 were 0.787 min−1 and 33.89 × 10 20 molecules g−1 min−1, respectively.


Author(s):  
Wah Chi

Resolution and contrast are the important factors to determine the feasibility of imaging single heavy atoms on a thin substrate in an electron microscope. The present report compares the atom image characteristics in different modes of fixed beam dark field microscopy including the ideal beam stop (IBS), a wire beam stop (WBS), tilted illumination (Tl) and a displaced aperture (DA). Image contrast between one Hg and a column of linearly aligned carbon atoms (representing the substrate), are also discussed. The assumptions in the present calculations are perfectly coherent illumination, atom object is represented by spherically symmetric potential derived from Relativistic Hartree Fock Slater wave functions, phase grating approximation is used to evaluate the complex scattering amplitude, inelastic scattering is ignored, phase distortion is solely due to defocus and spherical abberation, and total elastic scattering cross section is evaluated by the Optical Theorem. The atom image intensities are presented in a Z-modulation display, and the details of calculation are described elsewhere.


Author(s):  
J. J. Hren ◽  
S. D. Walck

The field ion microscope (FIM) has had the ability to routinely image the surface atoms of metals since Mueller perfected it in 1956. Since 1967, the TOF Atom Probe has had single atom sensitivity in conjunction with the FIM. “Why then hasn't the FIM enjoyed the success of the electron microscope?” The answer is closely related to the evolution of FIM/Atom Probe techniques and the available technology. This paper will review this evolution from Mueller's early discoveries, to the development of a viable commercial instrument. It will touch upon some important contributions of individuals and groups, but will not attempt to be all inclusive. Variations in instrumentation that define the class of problems for which the FIM/AP is uniquely suited and those for which it is not will be described. The influence of high electric fields inherent to the technique on the specimens studied will also be discussed. The specimen geometry as it relates to preparation, statistical sampling and compatibility with the TEM will be examined.


Author(s):  
G. L. Kellogg ◽  
P. R. Schwoebel

Although no longer unique in its ability to resolve individual single atoms on surfaces, the field ion microscope remains a powerful tool for the quantitative characterization of atomic processes on single-crystal surfaces. Investigations of single-atom surface diffusion, adatom-adatom interactions, surface reconstructions, cluster nucleation and growth, and a variety of surface chemical reactions have provided new insights to the atomic nature of surfaces. Moreover, the ability to determine the chemical identity of selected atoms seen in the field ion microscope image by atom-probe mass spectroscopy has increased or even changed our understanding of solid-state-reaction processes such as ordering, clustering, precipitation and segregation in alloys. This presentation focuses on the operational principles of the field-ion microscope and atom-probe mass spectrometer and some very recent applications of the field ion microscope to the nucleation and growth of metal clusters on metal surfaces.The structure assumed by clusters of atoms on a single-crystal surface yields fundamental information on the adatom-adatom interactions important in crystal growth. It was discovered in previous investigations with the field ion microscope that, contrary to intuition, the initial structure of clusters of Pt, Pd, Ir and Ni atoms on W(110) is a linear chain oriented in the <111> direction of the substrate.


Nanoscale ◽  
2020 ◽  
Vol 12 (15) ◽  
pp. 8065-8094 ◽  
Author(s):  
Xudong Wen ◽  
Jingqi Guan

Different kinds of electrocatalysts used in NRR electrocatalysis (including single atom catalysts, metal oxide catalysts, nanocomposite catalysts, and metal free catalysts) are introduced.


Nanoscale ◽  
2020 ◽  
Vol 12 (39) ◽  
pp. 20413-20424
Author(s):  
Riming Hu ◽  
Yongcheng Li ◽  
Fuhe Wang ◽  
Jiaxiang Shang

Bilayer single atom catalysts can serve as promising multifunctional electrocatalysts for the HER, ORR, and OER.


1984 ◽  
Vol 45 (C9) ◽  
pp. C9-343-C9-347 ◽  
Author(s):  
T. Sakurai ◽  
T. Hashizume ◽  
A. Jimbo
Keyword(s):  

2020 ◽  
Author(s):  
Weihong Lai ◽  
Heng Wang ◽  
Quan jiang ◽  
Zichao Yan ◽  
Hanwen Liu ◽  
...  

<p>Herein, we develop a non-selective charge compensation strategy to prepare multi-single-atom doped carbon (MSAC) in which a sodium p-toluenesulfonate (PTS-Na) doped polypyrrole (S-PPy) polymer is designed to anchor discretionary mixtures of multiple metal cations, including iron (Fe<sup>3+</sup>), cobalt (Co<sup>3+</sup>), ruthenium (Ru<sup>3+</sup>), palladium (Pd<sup>2+</sup>), indium (In<sup>3+</sup>), iridium (Ir<sup>2+</sup>), and platinum (Pt<sup>2+</sup>) . As illustrated in Figure 1, the carbon surface can be tuned with different level of compositional complexities, including unary Pt<sub>1</sub>@NC, binary (MSAC-2, (PtFe)<sub>1</sub>@NC), ternary (MSAC-3, (PtFeIr)<sub>1</sub>@NC), quaternary (MSAC-4, (PtFeIrRu)<sub>1</sub>@NC), quinary (MSAC-5, (PtFeIrRuCo)<sub>1</sub>@NC), senary (MSAC-6, (PtFeIrRuCoPd)<sub>1</sub>@NC), and septenary (MSAC-7, (PtFeIrRuCoPdIn)<sub>1</sub>@NC) samples. The structural evolution of carbon surface dictates the activities of both ORR and HER. The senary MSAC-6 achieves the ORR mass activity of 18.1 A·mg<sub>metal</sub><sup>-1</sup> at 0.9 V (Vs reversible hydrogen electrode (RHE)) over 30K cycles, which is 164 times higher than that of commercial Pt/C. The quaternary MSAC-4 presented a comparable HER catalytic capability with that of Pt/C. These results indicate that the highly complexed carbon surface can enhance its ability over general electrochemical catalytic reactions. The mechanisms regarding of the ORR and HER activities of the alternated carbon surface are also theoretically and experimentally investigated in this work, showing that the synergistic effects amongst the co-doped atoms can activate or inactivate certain single-atom sites.</p>


Sign in / Sign up

Export Citation Format

Share Document