Facile hydrothermal synthesis and enhanced electrochemical properties of a layer NiSiO/RGO nanocomposite with an interesting dandelion-like structure

2021 ◽  
Author(s):  
Guihong Han ◽  
Jing Zhao ◽  
Ze Yang ◽  
Bingbing Liu ◽  
Yanfang Huang ◽  
...  

Materials with unique structures can exhibit different properties and are widely studied in the preparation of new materials. Herein we reported a hydrothermal method to fabricate a layered nickel silicate/reduced...

RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20806-20817 ◽  
Author(s):  
I. C. Amaechi ◽  
G. Kolhatkar ◽  
A. Hadj Youssef ◽  
D. Rawach ◽  
S. Sun ◽  
...  

We report on the synthesis of photoferroic Cr3+-doped BaTiO3 nanoparticles with nominal Cr content ranging from 2–8 mol% by a microwave-assisted hydrothermal method.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850063
Author(s):  
Yanwei Sui ◽  
Haihua Hu ◽  
Yuanming Zhang ◽  
Bin Tang ◽  
Jiqiu Qi ◽  
...  

The hydrothermal method, using the template is a conspicuous way to change the morphology of the product, so it is used widely in many reports. The effect of temperature on morphology of NiCo2S4 by hydrothermal synthesis and its electrochemical properties is distinct as high-performance electrode materials for supercapacitors. With the help of the template (carbon sphere), different morphologies of NiCo2S4 under 90[Formula: see text]C, 120[Formula: see text]C and 180[Formula: see text]C were obtained. They have different properties after electrochemical analysis. In order to build a hierarchical multi-level structure, two-step vulcanization was carried out at each temperature, resulting in the difference in the morphology and performance of the six sample of electrodes. The obtained NiCo2S4 electrodes exhibit 1000[Formula: see text]F[Formula: see text]g[Formula: see text] at the current density of 1[Formula: see text]A[Formula: see text]g[Formula: see text] in the second-step of the hydrothermal process under 120[Formula: see text]C, which is superior to the microblocks NiCo2S4 electrode (90[Formula: see text]C, 888[Formula: see text]F[Formula: see text]g[Formula: see text] at the current density of 1[Formula: see text]A[Formula: see text]g[Formula: see text]) and microparticles NiCo2S4 electrode (180[Formula: see text]C, 574[Formula: see text]F[Formula: see text]g[Formula: see text] at the same current density) in the second-step hydrothermal, which shows a high-rate capability (640[Formula: see text]F[Formula: see text]g[Formula: see text] at 20[Formula: see text]A[Formula: see text]g[Formula: see text]). The obtained nanoparticles NiCo2S4 under 180[Formula: see text]C in the first-step hydrothermal electrode had an excellent cycle retention rate (89.7%), although its specific capacitance was lower. At the same time, the specific capacitance of these sample electrodes obtained in the second-step hydrothermal process is superior to those from the first-step. It was mainly attributed to the fact that temperature can influence the morphology by controlling ion exchange. And our experiment aims to use the hydrothermal method and the template method to find a more suitable temperature range to provide more ideas.


2014 ◽  
Vol 24 (3) ◽  
pp. 233
Author(s):  
Ta Anh Tan ◽  
Do Thi Phuong ◽  
Nguyen Thi Tu Oanh ◽  
Do Xuan Mai ◽  
Hoang Vu Chung ◽  
...  

Sodium Manganese Oxide (NaxMnO2) has attracted much attention as cathode materials for alkaline ion battery due to the ability of fast charge and discharge ion Na+, in particular in nanoscale. We report on the synthesis of NaxMnO2 nanowires via hydrothermal synthesis route from Mn2O3 and NaOH solution. The morphological observation indicates that the obtained Na0.44MnO2 nanowires with diameters of about 20-30 nm, length up to several micrometers were formed by this process. The electrochemical properties of fabricated materials were investigated by means of cyclic voltammetry technique and show that Sodium Manganese Oxide (NaxMnO2) is a promising material in the field of research and fabrication alkaline ion battery.


2010 ◽  
Vol 114 (24) ◽  
pp. 10671-10676 ◽  
Author(s):  
Jianmin Ma ◽  
Jiabiao Lian ◽  
Xiaochuan Duan ◽  
Xiaodi Liu ◽  
Wenjun Zheng

2021 ◽  
Author(s):  
Han Gao ◽  
Xianwei Zeng ◽  
Qiang Guo ◽  
Zhi Yang ◽  
Yanwen Deng ◽  
...  

Ca doped CuScO2 (CSO) delafossite oxides with 3-4 μm were synthesized through hydrothermal method using Cu(NO3)2•3H2O, Sc(NO3)3•xH2O as precursor at 240 °C for 24 h in this work. The influence...


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Getachew Solomon ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
Isabella Concina ◽  
Alberto Vomiero

Molybdenum sulfide (MoS2) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2) and advanced microwave methods (MW-MoS2), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.


RSC Advances ◽  
2015 ◽  
Vol 5 (44) ◽  
pp. 34761-34768 ◽  
Author(s):  
B. Nageswara Rao ◽  
P. Ramesh Kumar ◽  
O. Padmaraj ◽  
M. Venkateswarlu ◽  
N. Satyanarayana

Porous α-Fe2O3 nanostructures were developed in the presence of a base catalyst by a rapid microwave assisted hydrothermal method.


2007 ◽  
Vol 561-565 ◽  
pp. 495-498 ◽  
Author(s):  
Jin Liang Huang ◽  
Xiao Wang ◽  
Liu Shuan Yang ◽  
Chun Wei Cui ◽  
Xing Hua Yang

The cubic pyrochlore phase Bi1.5ZnNb1.5O7 nanopowder was successfully synthesized by the hydrothermal method (HTM) from the starting materials: Bi(NO3)3·5H2O, ZnO, Nb2O5 and the mineralizer: KOH. The XRD patterns prove that the cubic pyrochlore phase Bi1.5ZnNb1.5O7 nanopowder can be obtained by HTM, and TEM photographs show that the powders present the regularly granular shape, when the hydrothermal reactions were conducted at synthesis temperatures 140~220°C and reaction time for 6~48h. The crystalline sizes of the powders were calculated by the Scherrer equation to be about 43~49nm. The crystalline sizes decreased both with the increase in synthesis temperature and the prolonged reaction time until they reached to the minimum size about 43nm at 220°C for 24h.However, they tended to increase when the reaction time was above 24h.


Nanoscale ◽  
2014 ◽  
Vol 6 (21) ◽  
pp. 12310-12314 ◽  
Author(s):  
Geng-Tao Fu ◽  
Ru-Guang Ma ◽  
Xue-Qing Gao ◽  
Yu Chen ◽  
Ya-Wen Tang ◽  
...  

High-quality Pt48Ag52 alloy nano-octahedra are synthesized via one-pot hydrothermal method showing excellent electrocatalytic activity and stability for methanol oxidation reaction.


Sign in / Sign up

Export Citation Format

Share Document