Synthesis of a full range Fe-doped ZnFexCo2-xO4 and its application as anode material for lithium-ion battery

2021 ◽  
Author(s):  
Yu Wu ◽  
Jun Zhang ◽  
He Duan ◽  
Yanming Zhao ◽  
Youzhong Dong

The Fe-doped ZnFexCo2-xO4(x = 0.00, 0.17, 0.33, 0.47, 0.67, 0.87, 1.17, 1.37, 1.67, 1.87, 2.00) compounds were prepared by a sol−gel method. X-ray diffraction measure show the Fe-doping does not...

2019 ◽  
Vol 4 (1) ◽  
pp. 23-28
Author(s):  
Qurrota A’yuni ◽  
Trisna Kumala Dhaniswara

ABSTRAKMaterial FeF3 dapat diaplikasikan dalam berbagai bidang diantaranya sebagai material katoda untuk baterai ion litium dan katalis heterogen pada beberapa reaksi yang melibatkan sisi asam. Sintesis FeF3 dapat dilakukan melalui beberapa cara, salah satunya dengan metode sol-gel. Di dalam proses sol-gel adanya agen gelasi dapat mengontrol porositas dan sifat keasaman katalis. Pada penelitian ini dipilih agen gelasi dari senyawa alkohol yaitu metanol dan etanol. Masing-masing padatan yang telah disintesis kemudian dikarakterisasi struktur padatannya dengan difraksi sinar-X. Hasil penelitian menunjukkan bahwa padatan FeF3 telah berhasil disintesis melalui metode sol gel dengan agen gelasi yang berbeda yaitu metanol dan etanol yang masing-masing dituliskan sebagai FeF3(me) dan FeF3(et). Karakterisasi struktur padatan FeF3 menggunakan difraksi sinar-X menghasilkan difraktogram yang sesuai dengan PDF No. 85-0481 dan data ICSD kode 016671 yang memilikistruktur rhombohedral dengan space group R-3cR dan panjang kisi kristal sebesar a = b = c = 5,362 Å dengan sudut α = β = γ = 57,99°. Struktur kristal FeF3 disusun oleh ion Fe3+ dengan jari-jari 0,384 Å dan ion F- dengan jari-jari 0,798 Å dengan tipe ikatan ionik. Rasio besarnya kristalinitas FeF3(et) dibandingkan dengan kristalinitasFeF3(me) sebesar 5:4.Kata kunci: FeF3, sintesis sol-gel, difraksi sinar-X, struktur padatan. ABSTRACTFeF3 material can be applied in various fields including as cathode material for lithium ion batteries and heterogeneous catalysts in some reactions involving the acid side. Synthesis of FeF3 can be done in several ways, one of them is the sol-gel method. In the sol-gel process the gelation agent can control the porosity and acidity of the catalyst. In this study, gelation agents were selected from alcohol compounds, namely methanol and ethanol. The solids that has been synthesized was then solid structure characterized by X-ray diffraction. The results showed that FeF3 solids were successfully synthesized through the sol-gel method with different gelation agents, namely methanol and ethanol, each of which was written as FeF3(me) and FeF3(et). Characterization of the solid structure of FeF3 using X-ray diffraction produces a diffractogram according to the PDF No. 85-0481 and ICSD data code 016671 which has a rhombohedral structure with space group R-3cR andcrystal lattice length of a = b = c = 5.362 Å with an angle α = β = γ = 57.99°. The crystal structure of FeF3 is composed by Fe3+ ions with radius 0.384 Å and F- ions with radius 0.798 Å with ionic bond types. The ratio of the crystallinity of FeF3(et) compared to the crystallinity of FeF3(me) is 5:4.Keywords: FeF3, sol-gel synthesis, X-ray diffraction, solid structur.


2019 ◽  
Vol 13 ◽  
pp. 65-70
Author(s):  
Ilma Nuroniah ◽  
Slamet Priyono ◽  
Achmad Subhan ◽  
Bambang Prihandoko ◽  
Andi Suhandi ◽  
...  

2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2011 ◽  
Vol 399-401 ◽  
pp. 1447-1450
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The layered LiNi1/2Mn1/2O2 cathode materials were synthesized by a sol gel method. The effects of calcination temperature and time on the structural and electrochemical properties of the LiNi1/2Mn1/2O2 were investigated. The prepared samples were characterized by X-ray diffraction (XRD) and electrochemical analysis. The results revealed that the layered LiNi1/2Mn1/2O2 material could be optimal synthesized at temperature of 900°C for 10h. The sample prepared under the above conditions has the highest initial discharge capacity of 151 mAh/g and showed no dramatic capacity fading during 20 cycles between 2.5-4.5V at a current rate of 20mA/g.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012004
Author(s):  
Duha S. Ahmed ◽  
Noor Q. Ali ◽  
Ali A. Taha

Abstract In this paper, we reported the synthesis of NiO NPs and Mg doped-NiO NPs using the facile sol-gel method. Besides, the influence of the variation of Mg dopant on the structural, morphological and optical properties of the prepared Mg-NiO NPs was studied. The synthesized Mg-NiO NPs nanoparticles were characterized by X-Ray Diffraction Analysis (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis spectrophotometer. The X-ray diffraction confirmed the formation of the cubic structure of Mg doped-NiO NPs after doping with the magnesium. The increase in the crystal size was observed with the increase in the concentration of the Mg dopant element. The FESEM images reveal the formation of nickel oxide through the appearance of spherical clusters, while the hybrids appear as wrinkled surface covered with spherical particles of magnesium. The UV-Vis spectrum showed a shift towards shorter wavelengths with an increase in the concentration of the Mg dopant element due to the quantum confinement effect. The hemolysis activity study showed that NiO NPs had a low hemolysis percentage of 1.47% and increased with increasing concentration. While, increasing of the RBC hemolysis (5.9%) after NiO doped with Mg. The antibacterial activity was studied against S. aureus and P. aeruginosa bacteria, and indicated the highest growth inhibition zones of Mg-doped NiO NPs as compared with NiO NPs against of Staphylococcus aureus and Pseudomonas aeruginosa, respectively.


2022 ◽  
Author(s):  
He Duan ◽  
Zhiyong Zhou ◽  
Yanming Zhao ◽  
Youzhong Dong

Single-phase magnesium molybdate, MgMoO4, is successfully synthesized by a facile sol-gel method. Attributed to the multielectron reaction and the synergistic effect of the elements molybdenum (Mo) and magnesium (Mg), the...


Sign in / Sign up

Export Citation Format

Share Document