Magnetic Properties of Bulk Zn0.95-XMnXFe0.05O2 Prepared by Sol-Gel Method and Subsequent Hot Pressing

2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.

2017 ◽  
Vol 05 (01) ◽  
pp. 1750004
Author(s):  
R. Vettumperumal ◽  
S. Kalyanaraman ◽  
R. Thangavel

Nanocrystalline ruthenium (Ru)-doped ZnO thin films on sapphire substrate was prepared using sol–gel method by spin coating technique. The structural and I-V characteristics of Ru doped ZnO thin films were studied from the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) analysis and Raman spectroscopy. X-ray diffraction (XRD) results revealed that the deposited films belonged to hexagonal wurtzite structure with c-axis orientation. It is also confirmed from the Raman spectra. Enhancement of longitudinal optical (LO) phonon is observed by the strong electron–phonon interaction. An observed increment in sheet resistance with increase in dopant percentage of Ru (1–2[Formula: see text]mol%) in ZnO films was found and better I-V characteristic behavior was observed at 1[Formula: see text]mol% of Ru-doped ZnO thin films. Trap limited current flow inside the material was calculated from the log I versus log V plot in the higher voltage region.


2013 ◽  
Vol 789 ◽  
pp. 87-92 ◽  
Author(s):  
Dwita Suastiyanti ◽  
Bambang Soegijono ◽  
M. Hikam

The formation of barium hexaferrite, BaFe12O19 single phase with nanosize crystalline is very important to get the best performance especially magnetic properties. The samples were prepared by sol gel method in citric acid-metal nitrates system. Hence the mole ratios of Ba2+/Fe3+ were varied at 1:12 and 1:11.5 with pH of 7 in all cases using ammonia solution. The solution was then heated at 80-90°C for 3 to 4 hours. Then it was kept on a pre-heated oven at 150°C. The samples were then heat treated at 450°C for 24 hours. Sintering process was done at 850°C and 1000°C for 10 hours.Crystallite size was calculated by X-Ray Diffraction (XRD) peaks using scherrer formula. To confirm the formation of a single phase, XRD analyses were done by comparing the sample patterns with standard pattern. The peak shifting of pattern could be seen from XRD pattern using rocking curves at extreme certain 2θ. It was used MPS Magnet Physik EP3 Permagraph L to know magnetic characteristics. This method can produce BaFe12O19 nanosize powder, 22-34 nm for crystallite size and 55.59-78.58 nm for particle size. A little diference in nanosize affects the peak shifting of XRD pattern significantly but shows a little difference in magnetic properties especially for samples at 850°C and 1000°C with mole ratio of 1:12 respectively. The well crystalline powder is formed at mole ratio of 1:11.5 at 850°C since it has the finest particle (55.59 nm) and crystalline (21 nm), the highest remanent magnetization (0.161 T) and the lowest intrinsic coersive (275.8 kA/m). It is also fitting exactly to the standard diffraction pattern with the highest value of best Figure of Merit (FoM), 90%. XRD peak position of this sample is almost same with XRD peak position of another sample with sinter temperature 1000°C at same mole ratio.


1994 ◽  
Vol 346 ◽  
Author(s):  
Manzheng Ge ◽  
Honghua Kan ◽  
Hui Yang ◽  
Jianmin Qiao ◽  
Zhonghua Jiang

ABSTRACTThe Y2O3-La2O3 additive-coated Si3N4 powders of about 1.5 μm in size were prepared by the sol-gel method. X-ray diffraction, X-ray photoelectron spectroscopy, differential thermal analysis, thermogravimetric analysis, electron microscopies, and particle size analysis were used to study the coating on the Si3N4 particles. The results show that properties of the bulk Si3N4 powder are not affected by using the sol-gel coating and the powders are homogeneously coated by a thin layer of the Y2O3-La2O3 additives. The structure of the Y2O3-La2O3 coating layer is amorphous or microcrystalline with a submicron thickness. The coated powders are then more sinterable, and the mechanical properties of the ceramics prepared from such powders are improved.


2014 ◽  
Vol 664 ◽  
pp. 75-79
Author(s):  
Beh Hoe Guan ◽  
Muhammad Hanif Zahari ◽  
Lee Kean Chuan

This study investigates the influence of calcination temperatures on the magnetic properties of Ni0.5Zn0.5Fe2O4(Ni-Zn) ferrites.Ni-Zn ferrite with the chemical formula Ni0.5Zn0.5Fe2O4was prepared from their respective nitrate salts through the sol-gel method. The resulting ferrites were characterized using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). Single phased Ni0.5Zn0.5Fe2O4 was obtained at all calcination temperatures.FESEM Micrographs reveals an increase in the grain size with the increase of the calcination temperature. Consequently, the magnetic saturation of the samples were found to increase with each increase in the calcination temperature where the highest value obtained is 70.58 emu/g for the samples calcined at 1000°C.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2986 ◽  
Author(s):  
Catalin Negrila ◽  
Mihai Predoi ◽  
Simona Iconaru ◽  
Daniela Predoi

Zinc- (Zn) doped hydroxyapatite (HAp) were prepared by sol-gel method. Zinc-doped hydroxyapatite (ZnHAp) and HAp were analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Rietveld analysis revealed that the HAp and 7ZnHAp powders obtained by sol-gel method have a monophasic hydroxyapatite structure belonging to the P63/m spatial group. The results obtained from the ultrasound characterization of HAp and ZnHAp are also presented in this study. The effect of zinc concentration on properties that were deduced from ultrasonic measurements are studied in the case of a significant zinc concentration (xZn = 0.07). From the values of the ultrasonic waves velocities were determined by the pairs of elastic coefficients of the suspensions (Young modulus E, Poisson coefficient ν), which have proven to be similar to those determined by other authors.


2014 ◽  
Vol 496-500 ◽  
pp. 362-365 ◽  
Author(s):  
Qing Xiang Lin ◽  
Feng Miao ◽  
Yi Huang

CuAlO2microcrystallites were synthesized by Sol-gel method at 1200°C with Cu (CH3COO)2·H2O, Al (NO3)3·9H2O and ethylene glycol as raw materials. The phase composition,morphology,and optical properties of CuAlO2microcrystallites were chatacterized by X-ray diffraction, Scanning electron microscope,Photoluminescence and UV-visible spectroscopy respectively. The results of XRD show that CuAlO2with delafossite crystal structure is obtained. The defect emission were observed through PL spectrum test. It can be concluded that Cu-vacancy may be the possible reason of the observed activated p-type conductivity of CuAlO2. Can be found three characterized peak (λ1=290nm, λ2=410nm, λ3=430 nm) on the spectra.


2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750013 ◽  
Author(s):  
Bo He ◽  
Jing Xu ◽  
HuanPo Ning ◽  
Lei Zhao ◽  
HuaiZhong Xing ◽  
...  

The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol–gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol–gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV–Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


2013 ◽  
Vol 756 ◽  
pp. 91-98 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah

Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900 °C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900°C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-raySpectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealingtemperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. Normal 0 21 false false false MS X-NONE X-NONE MicrosoftInternetExplorer4 Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900°C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900 °C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-ray Spectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealing temperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


Sign in / Sign up

Export Citation Format

Share Document