Construction of Hierarchical ZnIn2S4/C3N4 Heterojunction for Enhanced Photocatalytic Degradation of Tetracycline

2022 ◽  
Author(s):  
Feng Min ◽  
Zhengqing Wei ◽  
Zhen Yu ◽  
Yu-Ting Xiao ◽  
Shien Guo ◽  
...  

Both efficient charge separation and sufficiently exposed active sites are critical limiting for solar-driven organic contaminants degradation. Herein, we describe a hierarchical heterojunction photocatalyst fabricated by in situ growth of...

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1186
Author(s):  
Yarui Wang ◽  
Wanchao Yu ◽  
Fanglan Geng ◽  
Lixia Zhao ◽  
Yawei Wang

The coexistence of pollutants presents a great challenge to the implementation of photocatalysts. In this work, a novel MIL-101(Fe)/TiO2 composite prepared by in situ growth of MIL-101(Fe) on TiO2 was developed for the synergetic oxidation of MC-LR and Cr(VI) reduction. The heterojunction material shows elevated photocatalytic behavior under ultraviolet compared with the unary pollutant system. Furthermore, quenching experiments and electron spin resonance confirm that the enhanced photodegradation behavior is related to the synergistic effect between the photocatalytic reduction and oxidation process, in which MC-LR consumes the holes and Cr(VI) captures electrons, followed by efficient charge separation through the conventional double-transfer mechanism between MIL-101(Fe) and TiO2. This investigation provides a deeper understanding of the construction of MOFs/semiconductor heterojunctions for the pollutants removal in multi-component contaminants system.


2021 ◽  
Author(s):  
Rokesh Karuppannan ◽  
Sakar Mohan ◽  
Trong-On Do

Amine-functionalized metal-organic framework integrated bismuth tungstate (Bi2WO6/NH2-UiO-66) nanocomposite has been developed by in-situ growth of NH2-UiO-66 on Bi2WO6 micro/nanoflower via hydrothermal technique and studied their photocatalytic performance towards ciprofloxacin degradation...


NANO ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 2050125
Author(s):  
Hui’e Wang

Here, a novel material consisting of black phosphorus (BP) and nickel-dimethylglyoxime nanorods was successfully prepared via a facile in situ calcination strategy, which possesses efficient catalytic activity for hydrogen production from water splitting. The reason for this phenomenon was explained by a series of characterization technologies such as SEM, TEM, XRD, UV–Vis, XPS and photoelectrochemical. We demonstrated that the fast e− transport channels were provided by the formed hollow structure of C@Ni-D nanorods, the highly exposed active sites on C@Ni-BP nanorods benefiting from the direct in situ growth of BP, the resulted synergetic effects of C@Ni-D-2 nanorods and BP achieved a better performance of photocatalytic hydrogen production from water splitting. The optimal hydrogen generation of C@Ni-BP-2 nanorods could reach up to 600[Formula: see text][Formula: see text]mol within 180[Formula: see text]min and the rate of hydrogen production did not decrease significantly after four repeated reaction cycles. This work may offer new direction in situ growth of novel catalysts for achieving highly efficient hydrogen production.


2020 ◽  
Author(s):  
T.-L. Hsiung ◽  
L.-W. Wei ◽  
H.-L. Huang ◽  
H. Paul Wang

Abstract Toxic disinfection byproducts such as trihalomethanes (CHCl3) are frequently found after chlorination for drinking water. Nano TiO2 which has been widely used for photocatalytic degradation of organic pollutants in wastewater, however, has relatively low effectiveness in the treatments of trace CHCl3. To engineer capable TiO2 photocatalysts, an understanding of their photoactive sites is of great importance and interest. By in situ X-ray absorption near edge structure (XANES) spectroscopy, photoactive sites such as A1 (4969 eV), A2 (4971 eV) and A3 (4972 eV) can be distinguished asfour-, five-, and six- coordinated Ti species, respectively in the nano-TiO2 (8.5 and 4.6 nm for TiO2 on SBA-15), TiO2 clusters (TiO2-SiO2), and highly atomic dispersed Ti (Ti-MCM-41) photocatalysts. It appears that the reactivity for the photocatalytic degradation of trace CHCl3 in drinking water lacks an expected relationship with the crystalline phase, band gap absorption edge, nor the particle size of the TiO2-based photocatalysts. Notably, the A2 sites being the main photocatalytic active species of the TiO2 may be accountable for the main (about 95%) photocatalytic degradation of trace CHCl3 in drinking water (7.2 ppm CHCl3/gTiO2∙hr). This work reveals that the A2 active sites of a TiO2-based photocatalyst are responsible for the photocatalytic reactivity, especially in photocatalytic degradation of CHCl3 in drinking water.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
T.-L. Hsiung ◽  
L.-W. Wei ◽  
H.-L. Huang ◽  
H. Paul Wang

Toxic disinfection byproducts such as trihalomethanes (e.g. CHCl3) are often found after chlorination of drinking water. It has been found that photocatalytic degradation of trace CHCl3 in drinking water generally lacks an expected relationship with the crystalline phase, band-gap energy or the particle sizes of the TiO2-based photocatalysts used such as nano TiO2 on SBA-15 (Santa Barbara amorphous-15), TiO2 clusters (TiO2–SiO2) and atomic dispersed Ti [Ti-MCM-41 (Mobil Composition of Matter)]. To engineer capable TiO2 photocatalysts, a better understanding of their photoactive sites is of great importance and interest. Using in situ X-ray absorption near-edge structure (XANES) spectroscopy, the A1 (4969 eV), A2 (4971 eV) and A3 (4972 eV) sites in TiO2 can be distinguished as four-, five- and six- coordinated Ti species, respectively. Notably, the A2 Ti sites that are the main photocatalytic species of TiO2 are shown to be accountable for about 95% of the photocatalytic degradation of trace CHCl3 in drinking water (7.2 p.p.m. CHCl3 gTiO2 −1 h−1). This work reveals that the A2 Ti species of a TiO2-based photocatalyst are mainly responsible for the photocatalytic reactivity, especially in photocatalytic degradation of CHCl3 in drinking water.


2017 ◽  
Vol 5 (20) ◽  
pp. 9671-9681 ◽  
Author(s):  
Xiaowei Shi ◽  
Mamoru Fujitsuka ◽  
Zaizhu Lou ◽  
Peng Zhang ◽  
Tetsuro Majima

The visible-light-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, and environmentally friendly photocatalysts for the hydrogen evolution reaction has remained a major challenge.


Sign in / Sign up

Export Citation Format

Share Document