Emerging investigator series: Long-term exposure of amorphous silica nanoparticles disrupts the lysosomal and cholesterol homeostasis in macrophages

Author(s):  
Ronglin Ma ◽  
Xiaoming Cai ◽  
Ye Zhou ◽  
Xi Liu ◽  
Di Wu ◽  
...  

Amorphous silica nanoparticles (ASiNPs) are generally considered to be biocompatible with limited acute toxicity. These nanoparticles were therefore exploited in diverse nanoproducts (e.g. foods and cosmetics) and may be released...

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61346 ◽  
Author(s):  
Yang Yu ◽  
Yang Li ◽  
Wen Wang ◽  
Minghua Jin ◽  
Zhongjun Du ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 68606-68614 ◽  
Author(s):  
Nivedita Chatterjee ◽  
Jisu Yang ◽  
Rambabu Atluri ◽  
Wonwoong Lee ◽  
Jongki Hong ◽  
...  

The systems toxicology approach revealed that the alterations of cholesterol biosynthesis were directly proportional with the surface area of amorphous silica nanoparticles (aSiNPs); the larger the surface area the higher the cholesterol level.


Author(s):  
João P. Vareda ◽  
Carlos A. García-González ◽  
Artur J. M. Valente ◽  
Rosana Simón-Vázquez ◽  
Marina Stipetic ◽  
...  

The toxicity and ecotoxicity effects, handling and disposal of synthetic amorphous silica nanoparticles and aerogels are reviewed and discussed.


2013 ◽  
Vol 1830 (1) ◽  
pp. 2256-2266 ◽  
Author(s):  
Ashutosh Pandey ◽  
Swati Chandra ◽  
Lalit Kumar Singh Chauhan ◽  
Gopeshwar Narayan ◽  
Debapratim Kar Chowdhuri

2013 ◽  
Vol 9 (11) ◽  
pp. 9183-9193 ◽  
Author(s):  
Stefaan J. Soenen ◽  
Bella Manshian ◽  
Shareen H. Doak ◽  
Stefaan C. De Smedt ◽  
Kevin Braeckmans

2017 ◽  
Vol 24 (10) ◽  
Author(s):  
Giulia Malachin ◽  
Elisa Lubian ◽  
Fabrizio Mancin ◽  
Emanuele Papini ◽  
Regina Tavano

ABSTRACT Dendritic cells (DCs) regulate the host-microbe balance in the gut and skin, tissues likely exposed to nanoparticles (NPs) present in drugs, food, and cosmetics. We analyzed the viability and the activation of DCs incubated with extracellular media (EMs) obtained from cultures of commensal bacteria (Escherichia coli, Staphylococcus epidermidis) or pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus) in the presence of amorphous silica nanoparticles (SiO2 NPs). EMs and NPs synergistically increased the levels of cytotoxicity and cytokine production, with different nanoparticle dose-response characteristics being found, depending on the bacterial species. E. coli and S. epidermidis EMs plus NPs at nontoxic doses stimulated the secretion of interleukin-1β (IL-1β), IL-12, IL-10, and IL-6, while E. coli and S. epidermidis EMs plus NPs at toxic doses stimulated the secretion of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-4, and IL-5. On the contrary, S. aureus and P. aeruginosa EMs induced cytokines only when they were combined with NPs at toxic concentrations. The induction of maturation markers (CD86, CD80, CD83, intercellular adhesion molecule 1, and major histocompatibility complex class II) by commensal bacteria but not by pathogenic ones was improved in the presence of noncytotoxic SiO2 NP doses. DCs consistently supported the proliferation and differentiation of CD4+ and CD8+ T cells secreting IFN-γ and IL-17A. The synergistic induction of CD86 was due to nonprotein molecules present in the EMs from all bacteria tested. At variance with this finding, the synergistic induction of IL-1β was prevalently mediated by proteins in the case of E. coli EMs and by nonproteins in the case of S. epidermidis EMs. A bacterial costimulus did not act on DCs after adsorption on SiO2 NPs but rather acted as an independent agonist. The inflammatory and immune actions of DCs stimulated by commensal bacterial agonists might be altered by the simultaneous exposure to engineered or environmental NPs.


Sign in / Sign up

Export Citation Format

Share Document