Accurate correction for the matrix interference on laser ablation MC-ICPMS boron isotope measurements in CaCO3 and silicate matrices

Author(s):  
David Evans ◽  
Axel Gerdes ◽  
Horst R. Marschall ◽  
Douglas Coenen ◽  
Wolfgang Müller

Knowledge of the boron isotopic composition of natural samples has found wide ranging application in both low and high temperature geochemistry. More recently, the development of boron isotope measurements using...

2004 ◽  
Vol 203 (1-2) ◽  
pp. 123-138 ◽  
Author(s):  
P.J. le Roux ◽  
S.B. Shirey ◽  
L. Benton ◽  
E.H. Hauri ◽  
T.D. Mock

2011 ◽  
Vol 66 (8) ◽  
pp. 604-609 ◽  
Author(s):  
Xianglei Mao ◽  
Alexander A. Bol'shakov ◽  
Dale L. Perry ◽  
Osman Sorkhabi ◽  
Richard E. Russo

2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


2006 ◽  
Vol 510-511 ◽  
pp. 358-361
Author(s):  
Won Yong Kim ◽  
Han Sol Kim ◽  
In Dong Yeo ◽  
Mok Soon Kim

We report on advanced Ni3Al based high temperature structural alloys with refractory alloying elements such as Zr and Mo to be apllied in the fields of die-casting and high temperature press forming as die materials. The duplex microstructure consisting of L12 structured Ni3Al phase and Ni5Zr intermetallic dispersoids was observed to display the microstructural feature for the present alloys investigated. Depending on alloying elements, the volume fraction of 2nd phase was measured to be different, indicating a difference in solid solubility of alloying elements in the matrix γ’ phase. Lattice parameter of matrix phase increased with increasing content of alloying elements. In the higher temperature region more than 973K, the present alloys appeared to show their higher strength compared to those obtained in conventional superalloys. On the basis of experimental results obtained, it is suggested that refractory alloying elements have an effective role to improve the high temperature strength in terms of enhanced thermal stability and solid solution hardening.


2010 ◽  
Vol 55 (29) ◽  
pp. 3305-3311 ◽  
Author(s):  
KeJun Hou ◽  
YanHe Li ◽  
YingKai Xiao ◽  
Feng Liu ◽  
YouRong Tian

2012 ◽  
Vol 512-515 ◽  
pp. 671-675 ◽  
Author(s):  
Ai Guo Zhou ◽  
Liang Li ◽  
Tai Chao Su ◽  
Shang Sheng Li

Ti3SiC2, a ternary carbide, was proposed at this paper to use as the binder of polycrystalline diamonds to overcome the weaknesses of traditional metal binders and ceramic binders. Ti3SiC2was first reported to be in-situ synthesized under high pressure (4GPa) and at high temperature (1400°C) (HPHT) from the mixtures of Ti, Si and graphite powders or the mixture of Ti, SiC and graphite powders. Ti3SiC2-damond composites were also made at HPHT from the previous mixtures and diamond particles. TiCx, Ti5Si3Cxand TiSi2were main impurities and/or intermediate products of Ti3SiC2samples synthesized at HPHT. Ti3SiC2content increased as synthesized time increased from 10 min to 60 min. For as-synthesized composites, diamond particles were evenly distributed in matrix. The diamond particles are bonded well with the matrix by three types of interface.


Sign in / Sign up

Export Citation Format

Share Document