scholarly journals Preparation of Mesh-like Collagen Scaffolds for Tissue Engineering

2022 ◽  
Author(s):  
Yan Xie ◽  
Naoki Kawazoe ◽  
Yingnan Yang ◽  
Guoping Chen

Collagen is an attractive biomaterial to construct scaffolds for tissue engineering and biomedical applications. Mesh-like collagen scaffolds were prepared using a synthetic poly(D,L-lactic-co-glycolic acid) (PLGA) mesh as a template. Collagen...

2007 ◽  
Vol 27 (2) ◽  
pp. 285-292 ◽  
Author(s):  
F. Wen ◽  
S. Chang ◽  
Y.C. Toh ◽  
S.H. Teoh ◽  
H. Yu

2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2021 ◽  
Author(s):  
Marissa Morales-Moctezuma ◽  
Sebastian G Spain

Nanogels have emerged as innovative platforms for numerous biomedical applications including gene and drug delivery, biosensors, imaging, and tissue engineering. Polymerisation-induced thermal self-assembly (PITSA) has been shown to be suitable...


2021 ◽  
Vol 4 (3) ◽  
pp. 2514-2522
Author(s):  
Odair Bim-Júnior ◽  
Fabiana Curylofo-Zotti ◽  
Mariana Reis ◽  
Yvette Alania ◽  
Paulo N. Lisboa-Filho ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1269
Author(s):  
Gareth Sheppard ◽  
Karl Tassenberg ◽  
Bogdan Nenchev ◽  
Joel Strickland ◽  
Ramy Mesalam ◽  
...  

In tissue engineering, scaffolds are a key component that possess a highly elaborate pore structure. Careful characterisation of such porous structures enables the prediction of a variety of large-scale biological responses. In this work, a rapid, efficient, and accurate methodology for 2D bulk porous structure analysis is proposed. The algorithm, “GAKTpore”, creates a morphology map allowing quantification and visualisation of spatial feature variation. The software achieves 99.6% and 99.1% mean accuracy for pore diameter and shape factor identification, respectively. There are two main algorithm novelties within this work: (1) feature-dependant homogeneity map; (2) a new waviness function providing insights into the convexity/concavity of pores, important for understanding the influence on cell adhesion and proliferation. The algorithm is applied to foam structures, providing a full characterisation of a 10 mm diameter SEM micrograph (14,784 × 14,915 px) with 190,249 pores in ~9 min and has elucidated new insights into collagen scaffold formation by relating microstructural formation to the bulk formation environment. This novel porosity characterisation algorithm demonstrates its versatility, where accuracy, repeatability, and time are paramount. Thus, GAKTpore offers enormous potential to optimise and enhance scaffolds within tissue engineering.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Traian V. Chirila

Fibroin is a fibrous protein that can be conveniently isolated from the silk cocoons produced by the larvae of Bombyx mori silk moth. In its form as a hydrogel, Bombyx mori silk fibroin (BMSF) has been employed in a variety of biomedical applications. When used as substrates for biomaterial-cells constructs in tissue engineering, the oxygen transport characteristics of the BMSF membranes have proved so far to be adequate. However, over the past three decades the BMSF hydrogels have been proposed episodically as materials for the manufacture of contact lenses, an application that depends on substantially elevated oxygen permeability. This review will show that the literature published on the oxygen permeability of BMSF is both limited and controversial. Additionally, there is no evidence that contact lenses made from BMSF have ever reached commercialization. The existing literature is discussed critically, leading to the conclusion that BMSF hydrogels are unsuitable as materials for contact lenses, while also attempting to explain the scarcity of data regarding the oxygen permeability of BMSF. To the author’s knowledge, this review covers all publications related to the topic.


2010 ◽  
Vol 20 (40) ◽  
pp. 8865 ◽  
Author(s):  
Leandro Forciniti ◽  
Nathalie K. Guimard ◽  
Sueyeon Lee ◽  
Christine E. Schmidt

2021 ◽  
Author(s):  
Tudor Vasiliu ◽  
Bogdan Florin Florin Craciun ◽  
Andrei Neamtu ◽  
Lilia Clima ◽  
Dragos Lucian Isac ◽  
...  

The biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as antifouling in biomedical devices. Experimental studies have shown...


Sign in / Sign up

Export Citation Format

Share Document