scholarly journals Carbon Dots versus Nano-Carbon/Organic Hybrids – Dramatically Different Behaviors in Fluorescence Sensing of Metal Cations with Structural and Mechanistic Implications

2021 ◽  
Author(s):  
Ping Wang ◽  
Mohammed Meziani ◽  
Yingqiang Fu ◽  
Christopher E. Bunker ◽  
Xiaofang Hou ◽  
...  

Carbon dots (CDots) are defined as surface-passivated small carbon nanoparticles, with the effective passivation generally achieved by organic functionalization. Photoexcited CDots are both potent electron donors and acceptors, and their...

RSC Advances ◽  
2014 ◽  
Vol 4 (76) ◽  
pp. 40152-40160 ◽  
Author(s):  
Irene Papagiannouli ◽  
Athanasios B. Bourlinos ◽  
Aristides Bakandritsos ◽  
Stelios Couris

Nanodiamonds (NDs) and carbon-dots (CDs) suspensions exhibit significant NLO response under both ps and ns laser excitation. NDs exhibit important optical limiting action under nanosecond visible (532 nm) and infrared (1064 nm) laser excitation.


2013 ◽  
Vol 832 ◽  
pp. 767-772 ◽  
Author(s):  
Shoichiro Ikeda ◽  
Shinji Kawasaki ◽  
Akinari Nobumoto ◽  
Hideo Ono ◽  
Shinji Ono ◽  
...  

We have produced nanocarbon suspension in pure water, which is named as Nanocaloid®, by a simple DC electrolysis from a synthetic graphite plates as anodes and SUS plates as cathodes in purified water at room temperature. The amount of carbon nanoparticles was monitored by the conductivity and pH value of the electrolyte solution, and also by a simple gravimetric way after drying the solution. If the current density increases, the diameter of the carbon particles becomes larger and the amount of precipitates becomes also large. It takes about six weeks to obtain about 0.4 wt% carbon suspension solution under the normal electrolysis conditions. Characterization of Nanocaloid®has been conducted to show unique properties and promising epoch-making applications such as solid lubricants for non-oily cutting fluids and conductive agents for reuse of deteriorated Pb-acid batteries. The performance of nanocarbon particles in oil lubricants in addition to the preparation will be reported.


Author(s):  
Jinxia Xu ◽  
Jingru Sun ◽  
Fanyong Yan ◽  
Hao Zhang ◽  
Ran Ma ◽  
...  

2019 ◽  
Vol 21 (3) ◽  
pp. 449-471 ◽  
Author(s):  
Meng Li Liu ◽  
Bin Bin Chen ◽  
Chun Mei Li ◽  
Cheng Zhi Huang

We systematically summarize the recent progress in the green synthesis and formation mechanism of CDs with the hope to provide guidance for developing CDs with the concept of green chemistry. In addition, we discuss and organize the current opinions on the fluorescence origin of CDs and the latest progress of CDs in fluorescence sensing applications.


2018 ◽  
Vol 42 (8) ◽  
pp. 6399-6407 ◽  
Author(s):  
Satyabrat Gogoi ◽  
Raju Khan

In the current study, we report the near infrared (NIR) upconversion (in the range of 850–950 nm) properties of carbon nanoparticles and their utility as a fluorescence probe for selective and sensitive detection of glutathione (GSH).


2018 ◽  
Vol 36 (1) ◽  
pp. 14-20 ◽  
Author(s):  
B. Manoj ◽  
Ashlin M. Raj ◽  
George Thomas Chirayil

Abstract Coal is a natural energy resource which is mainly used for energy production via combustion. Coal has nanocrystals embedded in it, formed during the coalification process, and is an ideal precursor for nano-carbon dots and diamonds. Herein, we report a facile top-down method to synthesise nanodots and diamonds of the size of 5 nm to 10 nm from three different types of coal by simple chemical leaching. TEM analysis revealed the formation of a mixture of carbon dots, graphene layers, and quantum dots in bituminous coal and sub-bituminous coal. Raman analysis confirmed the existence of synthesized nanodiamond and nano-carbon mixed phase with defects associated with it. It is concluded that graphene quantum dots, nanodiamonds, graphene sheets and carbon dots present in coal can be extracted by simple chemical treatment. These structures can be tuned to photoluminescent material for various optoelectronic applications or energy harvesting devices like super capacitors.


2019 ◽  
Vol 5 (2) ◽  
pp. 33 ◽  
Author(s):  
Fengming Lin ◽  
Yan-Wen Bao ◽  
Fu-Gen Wu

Carbon dots (or carbon quantum dots) are small (less than 10 nm) and luminescent carbon nanoparticles with some form of surface passivation. As an emerging class of nanomaterials, carbon dots have found wide applications in medicine, bioimaging, sensing, electronic devices, and catalysis. In this review, we focus on the recent advancements of carbon dots for sensing and killing microorganisms, including bacteria, fungi, and viruses. Synthesis, functionalization, and a toxicity profile of these carbon dots are presented. We also discuss the underlying mechanisms of carbon dot-based sensing and killing of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document